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Abstract

Housing costs are key in understanding real income differences across space and time. Stan-
dard measures of housing costs do not account for availability differences, where some housing
varieties are available in certain cities or time periods but not others. When households have
idiosyncratic preferences over housing units, the set of available housing varieties in a city mat-
ters. This paper develops theoretically-founded housing price indices to measure housing costs
that account for availability differences. To allow for flexible substitution patterns, I propose
a method to jointly estimate the nests that varieties belong to and the elasticity of substitution
across varieties within each nest. I find that households in larger cities benefit from having
access to varieties not available in smaller cities. Utility-consistent housing prices reduce the
elasticity of housing prices with respect to population by a half. Since housing is a third of
household expenditure, this implies that we have systematically underestimated real income
and overestimated residual amenities in larger cities. In contrast to previous estimates, I find
that real income is increasing in city size after accounting for availability differences.
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I Introduction

Housing is a household’s single largest expenditure item, accounting for a third of U.S. house-
hold expenditure. Therefore, measuring the cost of housing is key in understanding real income
differences across space and time. Housing is not homogeneous and standard approaches have
incorporated observable heterogeneity in price comparisons. Standard hedonic approaches are
widely used in the construction of local housing price indices (e.g., Albouy 2016, Moretti 2013,
Eeckhout et al. 2014, Baum-Snow and Han 2021) and underlie the construction of regional price
parities by the Bureau of Economic Analysis.1 Across time, repeat-sales indices are used to mea-
sure inflation by comparing transaction prices of the same housing unit (Case and Shiller 1989).

There is a key dimension that is unaccounted for by standard approaches to measuring hous-
ing costs: availability differences. Availability differences arise when some housing varieties are
available in certain cities or time periods but not others.2 When households have idiosyncratic
preferences over housing units, the choice set of available housing varieties in a city matters.3 In-
creases in the available set of varieties means that households benefit from a better match to their
ideal housing unit.

This paper develops utility-consistent housing price indices to measure housing costs that ac-
count for availability differences. Since households substitute across housing varieties when faced
with different prices and choice sets, it is important to allow for flexible substitution patterns when
estimating price indices. I use a nested demand structure that partitions housing varieties into
nests, which generates flexible substitution patterns as varieties within a nest are more similar to
each other than compared to varieties in other nests.4

I propose a new data-driven method that jointly estimates both the elasticities of substitution
and the nesting structure for a Nested Constant Elasticity of Substitution (CES) demand system.
A data-driven nesting approach is important in two ways. First, it is not obvious how to clas-
sify housing varieties into nests. Second, there is no guarantee that a researcher-specified nesting
structure corresponds to the true utility specification. Since my method relies on the prices and
quantities of individual varieties, it also works in less data-rich settings where variety character-

1The hedonic approach estimates a regression of housing prices on physical characteristics and city fixed effects.
The city fixed effects are then extracted and used as city-level housing price indices. For details underlying the hedonic
adjustment to housing prices by the Bureau of Economic Analysis, see Aten 2005, Martin, Aten, and Figueroa 2011, and
Rassier et al. 2021.

2I define a housing variety by the physical characteristics of the residential unit. Specifically, I consider a variety
as defined by the full interaction of the decade the housing structure was originally built (or underwent substantial
renovation), number of rooms, number of bedrooms, number of bathrooms, number of floors, structure type, lot size
quintile, and distance categories from the Metropolitan Statistical Area (MSA) central business district (CBD).

3As evidence of these idiosyncratic preferences, households engage in costly search effort when purchasing a home.
According to Zillow survey data, a typical buyer spends 4.4 months searching, with 18% of households spending more
than 6 months (Zillow 2018). Han and Strange (2015) describe how the “multidimensional heterogeneity of buyer
tastes” is an important reason why real estate agents are so prevalent and command significant fees. Finally, most
households would not purchase a home without visiting. For example, survey data from Redfin shows that 80% of
home buyers would have to visit before submitting an offer (”Buying a Home Sight Unseen,” New York Times, July
2018).

4This nested demand structure is widely used in empirical industrial organization, international trade, and macroe-
conomics due to its tractability (e.g., Goldberg 1995, Broda and Weinstein 2006, 2010, and Handbury 2022).
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istics are unobserved.
I find that households in larger cities benefit from having access to housing varieties unavail-

able in smaller cities. Utility-consistent housing price indices that account for housing variety
availability differences reduce the elasticity of housing costs with respect to city population by
50% relative to a standard hedonic price index. These differences are quantitatively important.
A standard hedonic approach results in predicted housing costs that are 2.2 times higher in New
York (population 19.3 million) than Merced, CA (population 266,000). Utility-consistent price in-
dices that account for variety differences imply housing costs that are only 1.5 times higher.

As households benefit from increased housing variety in larger cities, this means that we have
underestimated real income in larger cities. The elasticity of real income with respect to population
increases from -0.02 based on a standard hedonic approach to 0.02 based on utility-consistent
housing price indices. Based on a standard hedonic approach, predicted real income is 7.2% lower
in New York compared to Merced. In contrast, utility-consistent housing price indices imply the
opposite: real income is 7.5% higher in New York compared to Merced.

In a spatial equilibrium where households are indifferent between cities, amenities are a com-
pensating differential for real income differences.5 As a result, accounting for the benefits of in-
creased housing variety in larger cities revises downward estimates of amenities in larger cities.
I find that recovered amenities based on a standard hedonic approach imply a counter-intuitive
positive valuation for commute time. In contrast, after accounting for the increased housing vari-
ety in larger cities, commute time is negatively valued by households.

To micro-found the price indices, I develop a model of housing demand with differentiated
housing varieties that accounts for the discrete nature of housing decisions. In the first stage,
households decide on a city to live in and how to allocate their income between housing and other
consumption. In the second stage, households choose a single housing variety and decide on the
square feet of their unit. I show that the expected utility from housing services in the household’s
location choice decision can be expressed as a function of the nested CES housing price index. This
is the result of a key timing assumption: although households know the price and quality of each
housing variety in each city when they make their location choice, households draw idiosyncratic
preferences over housing varieties after they choose a city to live in.6

A nested CES demand structure is useful due to the tractable and parsimonious exact price
indices. As the CES price indices are separable in a component that measures variety differences
and a component that measures relative prices, this allows me to easily decompose why the nested

5A literature has highlighted sorting on (unobserved) worker productivity to larger cities as a key driver of higher
nominal incomes in large cities (Combes et al. 2010, De La Roca and Puga 2016, Davis and Dingel 2020). With sorting,
higher real incomes in larger cities do not necessarily imply lower amenities as the Rosen-Roback spatial equilibrium
condition only applies to homogeneous households.

6These idiosyncratic draws may reflect differentiation across units within a variety or idiosyncratic match draws
that are ex-ante unknown to the household. For instance, Han and Strange (2015) state that “[b]uyers who are con-
sidering moving do not know which houses will suit their tastes until they search.” I show in Appendix B that I can
generate the same location choice probabilities and nested CES housing price index with a simultaneous choice over
locations, housing nests, and housing varieties. Instead of the timing assumption, I make an analogous assumption
that a household’s preference draws for a housing variety are uncorrelated across locations.
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CES approach generates different price indices than the standard hedonic approach. In contrast
to a single nest structure, a nested CES relaxes the assumption of Independence of Irrelevant
Alternatives for varieties in different nests. By allowing the elasticities of substitution to differ
across nests, variety differences across cities will have differential impacts depending on the nests
that the varieties belong to.

To construct the price indices, two key parameters are the nesting structure and the elastici-
ties of substitution. To jointly estimate both parameters, I develop a new application of the panel
Group Fixed Effects (GFE) estimator from Bonhomme and Manresa (2015). The method minimizes
a least-squares criterion with respect to the demand parameters and all possible partitions of va-
rieties.7 The key idea behind the method is that varieties within a nest share the same nest-level
elasticity of substitution and the same nest-level price index. The estimation algorithm iterates
between a step that solves for the nesting structure with a k-means clustering algorithm and a
step that solves for the elasticities of substitution with a standard fixed-effects regression. I show
high accuracy of both the nest assignment and elasticity estimation in Monte Carlo simulations.

Utilizing a rich set of fixed effects based on the panel structure, I make three identifying as-
sumptions: 1) fixed effects absorb the endogenous quantity response from homeowners, 2) de-
mand and supply shocks are uncorrelated 3) nest-market-level fixed effects are systematically
different across nests. The first two assumptions address omitted variable bias when I regress
prices on quantities to estimate the inverse demand elasticity.8 The third is an additional assump-
tion from Bonhomme and Manresa (2015) that is needed to identify both the nest structure and
demand parameters. In the case of nested CES demand, I show that the nest-market-level fixed ef-
fects have a structural interpretation corresponding to nest-level price indices and quality shocks.

To estimate the housing price indices, I use transaction-level prices, square feet, and housing
characteristics from Zillow’s ZTRAX database. My final sample includes 19 million transactions in
98 Metropolitan Statistical Areas (MSA) between 2005 and 2019. Since I use the transaction prices
of housing units, the price indices I construct are measures of the prices available to a home buyer
rather than a measure of the value of the overall housing stock. These prices are consistent with
the location choice model: marginal households that decide to move to an MSA choose among the
available housing varieties for sale.

I find important heterogeneity in housing characteristics and elasticities of substitution across
the estimated nests. I estimate that the elasticities of substitution range from 6.5 to 9.9 across six
nests in contrast to a single nest estimate of 8.3. As the estimation only uses prices and quantities of
individual varieties, I can verify my estimated nest structure by analyzing the density of housing
characteristics in each nest. I am able to sharply characterize three nests that account for 90% of

7The application of the GFE estimator to nested CES demand estimation is new: Bonhomme and Manresa prove
statistical properties of the estimator and apply GFE to investigate the link between democracy and growth. Almagro
and Manresa (2021 Slides) have concurrent work on applying the GFE estimator to a nested logit demand system.

8The demand elasticity in CES is also known as the elasticity of substitution. With the inclusion of fixed effects for
each variety in each MSA, the demand parameters are estimated from relative movements in quantities and prices for
each variety over time in each MSA. To absorb correlated trends in demand and supply shocks over time, I include
linear time trends for each variety in each MSA.

3



the expenditure: 1) The McMansion nest that contains large single-family detached units built in
the 1990s and 2000s, 2) The Suburban nest that contains smaller single-family detached units built
in the post-war era, 3) The Urban nest that contains units close to the city center.9

Using the estimated nest structure and elasticities of substitution, I construct utility-consistent
spatial price indices that measure how housing prices and the set of available varieties in each
MSA compare to prices and the set of available varieties in a comparison MSA. There are two
components of the CES price index comparison: the first measures variety differences (the variety
adjustment) and the second measures the relative prices and shares of common varieties that are
present in both comparison points (the common price index). The variety adjustment captures
the welfare impact of variety differences across space and is a function of the relative expenditure
shares on common varieties in the two comparison points, mediated by the elasticity of substitu-
tion. For varieties that are more substitutable, variety differences should matter less for welfare.

I find that the increased housing variety in larger cities is quantitatively important. Compared
to a standard hedonic index which has a 0.19 elasticity with respect to population, the overall
nested CES price index has a 0.09 elasticity with respect to population. This difference is primarily
driven by the variety adjustment term of the nested CES price index, which has a negative 0.07
elasticity with respect to population. Hence, standard hedonic approaches overestimate housing
prices in larger cities since they do not account for differences in the available choice set.

I show that the increased availability of housing varieties in larger cities is robust to two alter-
native specifications. First, I find a similar variety effect across city sizes when I follow Handbury
and Weinstein (2014) and consider the comparison of each MSA to a representative national house-
hold that has access to all varieties.10 Second, the population elasticity of the variety adjustment
is robust to including average household income as a control.

The nested CES comparison generates larger variety adjustments across cities than the single
nest CES comparison, demonstrating the importance of flexibly estimating substitution patterns.
This difference arises due to a mechanism similar to the one highlighted in Ossa (2015), who an-
alyzes gains from trade with heterogeneous sectors. When there are larger variety differences in
nests with a lower elasticity of substitution, this will generate a larger variety adjustment com-
pared to the single nest case.

Consistent with the cross-sectional results, I find that faster growing MSAs between 2005 and
2019 experienced relative increases in variety availability. This relative increase in variety offsets
20% of the relative increase in the common price component in faster growing MSAs. Comparing
the MSA at the 90th percentile of population growth to the MSA at the 10th percentile, I find
that the 15% relative increase in the common price index is partially offset by a 2.8% decline in

9Moreover, I find that the McMansion nest has the lowest price per square foot and the highest elasticity of substitu-
tion. The remaining three nests contain other urban units: on average they are more expensive, close to the city center,
and medium-sized.

10The national household comparison asks how prices in each MSA compare to the quantity-weighted prices avail-
able to a national household and how the set of available varieties in each MSA compares to what is available nationally.
For the national comparison, since the national household has access to all varieties, the common varieties are the set
of varieties available in each city.
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the variety adjustment. These results indicate the importance of accounting for housing variety
differences not only across space, but also across time.

Since housing expenditures account for around a third of a household’s budget, housing va-
riety differences impact the measurement of real income across space. The benefits of increased
housing variety in larger cities means that previous studies have underestimated real income in
larger cities (Albouy 2011, 2016 and Diamond and Moretti 2021). Utility-consistent housing prices
reverse the result from Albouy (2011, 2016) that real income falls with city size. Under my pre-
ferred specification, I find that once I account for housing availability differences, real income is
increasing in city size.11

Differences in real income further impact the measurement of amenities in a spatial equilib-
rium. When households are indifferent between cities, amenities compensate households for real
income differences. Because standard hedonic approaches underestimate real income in larger
cities, they overestimate amenities in larger cities. As a result, recovered amenities using utility-
consistent housing prices imply different valuations for characteristics that systematically covary
with population size. After accounting for housing variety differences, I find that commuting is a
negative amenity rather than a positive amenity, and the cost of air pollution doubles.

In the last part of the paper, I show that the increased variety in larger cities benefits high-
income households the most. I investigate heterogeneity in housing costs by merging transaction-
level mortgage applicant income data. I find that the increased variety in larger cities benefits
households in all income quartiles. However, higher income households benefit more from the
increased variety than compared to lower income households. As a result, the elasticity of utility-
consistent housing prices with respect to population is 0.1 for the lowest income quartile compared
to 0.06 for the highest income quartile.12

Finally, I investigate how real income varies by city size for households of different skill types.
I map income-quartile-specific housing prices and housing expenditure shares to three skill types:
incomplete high school (low skill), high school graduates (medium skill), and college graduates
(high skill). In contrast to Diamond and Moretti (2021), I find that real income in larger cities
based on the standard hedonic approach is underestimated for all three skill types: I estimate
that the population elasticity of real income increases by 0.03 after accounting for housing variety
differences.13

Related Literature. Housing costs are a key input in recent quantitative spatial models (e.g.,

11Card, Rothstein and Yi (2021) find that standard estimates of the effect of city size on nominal wages are overesti-
mated due to sorting. To address unobserved worker heterogeneity, Card et al. use longitudinal data from the LEHD
and include worker fixed effects. In contrast, I follow Albouy (2011, 2016) and Diamond and Moretti (2021) by control-
ling for observable worker demographics. I estimate an elasticity of 0.05 of household income with respect to city size
in contrast to their elasticity of 0.03. Using their estimates will not affect the degree to which we have underestimated
real income in larger cities.

12These results are related to a recent literature that has investigated the link between amenities and income, includ-
ing Diamond (2016) and Almagro and Dominguez-Iino (2022).

13For low skill households, the population elasticity of real income increases from -0.05 to -0.02, while for medium
skill households the population elasticity increases from -0.01 to 0.02. For high skill households, the population elastic-
ity of real income increases from 0.02 to 0.05. Although high skill households benefit the most from increased variety
availability in large cities, this benefit is offset by lower expenditure shares on housing relative to low skill households.
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Redding and Rossi-Hansberg 2017 for a review, Ahflefdt et al. 2015, Diamond 2016). Spatial mod-
els typically feature both endogenous agglomeration and congestion forces that increases in pop-
ulation size (Allen and Arkolakis 2014, Allen and Donaldson 2022). As a result, housing costs that
account for variety availability will affect calibration of these quantitative models, both for how
we think about endogenous amenities and congestion costs across cities, and also the calibration
of amenity residuals.

The paper proposes a joint estimation approach that is relevant to the trade and macroeco-
nomics literature that relies on nested CES demand systems. Building upon Sato (1976) and Vartia
(1976), Feenstra (1994) shows how to extend the exact price indices to account for variety differ-
ences. In recent work, Redding and Weinstein (2020) show how to account for quality differences.
Handbury and Weinstein (2014) use a nested CES structure and find increased grocery availability
in larger cities.

My model and estimation build upon the literature on housing demand. Bayer et al. (2007) and
Calder-Wang (2020) apply discrete-choice models to estimate housing demand within a metropoli-
tan area. I utilize a similar micro-foundation and evaluate cross-metropolitan differences in hous-
ing costs. The nesting structure is related to the housing search literature that has highlighted
the importance of market segments, defined by housing characteristics and neighborhood, that
households search over (Piazzesi, Schneider, and Stroebel, 2010).14 The nests I estimate can be
interpreted as market segments; as a result, the price indices capture both the substitution across
varieties within a segment and the substitution across segments.

Finally, this paper contributes to the literature on hedonic housing estimation (e.g., see Shep-
pard (1999) for a review and Diewert et al. (2008)). In recent work, Epple, Quintero, and Sieg
(2020) consider housing differentiated by a latent quality variable with non-homothetic prefer-
ences for quality. In contrast to their approach, my housing demand model is able to capture
variety differences: what happens when some qualities are unavailable in one location versus an-
other? Although most of my analyses assume homothetic preferences, in the last part of the paper
I analyze how housing costs vary across city size by income quartile.

II Stylized Facts

To motivate the theory and structural model, I document two stylized facts about housing avail-
ability differences across cities. First, I find that large MSAs have substantially more housing
varieties than small MSAs. Second, I find that there are systematic differences in the types of
housing available in large versus small MSAs.

A key methodological question is how to define a housing variety. I define a housing vari-
ety by the full interaction of observable housing characteristics (e.g., number of rooms, bedrooms,

14Using real estate search data, Piazzesi et al. divide the San Francisco Bay Area into 500+ segments by zip code,
price, and bathrooms. Their definition of a segment sits between my definition of a variety and nest, although this
analogy is imperfect. The geography of their segments is much more granular while I have a much richer set of other
housing characteristics that matter for household preferences.
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structure type, decade built), and distance categories from the Metropolitan Statistical Area (MSA)
central business district (CBD).15 This granular definition allows me to measure the exact combi-
nation of housing characteristics that a household considers in their purchase decision. Since the
definition of a variety includes the distance from the city center, housing prices can change sys-
tematically based on the distance from the city center, which is a key empirical and theoretical
result in the urban literature.

II.1 Number of Varieties Across Cities

I use housing transaction data from the Zillow ZTRAX database to estimate how the number of
unique varieties varies by city size. The ZTRAX database combines housing characteristics data
from county assessor offices and housing transaction data from country recorder offices. I find
that large cities have more unique varieties of housing transacted compared to small cities: there
is an elasticity of 0.42 between the number of unique varieties and population size.16 Figure 1
documents this positive relationship in 2015 for the 98 MSAs in my final sample (see Section V.1
for further details on the ZTRAX data). As a robustness check, Figure A5 shows similar elasticities
for owner-occupied units and rental units in the American Community Survey.17

What can generate this positive relationship between MSA size and number of housing vari-
eties? In Appendix A, I develop a spatial equilibrium model where a fixed cost of constructing
new housing varieties leads to a larger number of equilibrium varieties in larger population areas.
With CES demand over symmetric varieties and free entry, a larger population size increases the
number of varieties since there is a fixed scale for each variety (due to a constant markup over
marginal costs à la Krugman 1980). In a spatial equilibrium, a sufficient condition for a locally
stable equilibrium is a sufficiently high elasticity of substitution across varieties and a high input
share of land in the production of housing floor area.

II.2 Variety Differences Across Cities

To analyze the contribution of housing characteristics to the increased variety in larger cities, I
omit each characteristic from the definition of a variety. I then re-compute the number of varieties
under the new definition and re-estimate the elasticity of the number of varieties with respect to
population. Figure 2 plots the change in the elasticity relative to the baseline estimate in Figure 1
as each characteristic is omitted one at a time from the definition of a variety.

There is significant heterogeneity across characteristics in their contribution to the increased
variety in larger cities. The largest decrease is caused by omitting the decade the unit was built,

15The full list of observable characteristics include the decade the housing structure was originally built (or un-
derwent substantial renovation), number of rooms, number of bedrooms, number of bathrooms, number of floors,
structure type, and lot size quintile.

16I run a regression of log number of unique varieties transacted on log population size with year fixed effects.
17Although the ACS has a wider sample of MSAs, there are several benefits of using the Zillow ZTRAX data. First, the

ZTRAX dataset contains market prices rather than self-reported valuations as in the ACS. Second, there is substantially
more detailed housing characteristics in the ZTRAX data, allowing me to define a more granular variety. Third, ZTRAX
contains square feet and detailed location data, which the ACS data does not have.
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Figure 1: Number of Varieties vs Population
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Notes: Figure plots the log number of unique housing varieties in each MSA versus log MSA population for 98 MSAs
in ZTRAX data in 2015 (see Data section for further details).

which reduces the elasticity of the number of varieties with respect to population by 17%. The sec-
ond largest decrease is caused by omitting the number of rooms, which leads to a 13% decrease.
Since omitting distance from city center only leads a 6% decrease, this is suggestive that the in-
creased number of varieties is not mechanically driven by the fact that more populous MSAs are
also physically larger.

Next, I compare differences in the density of housing characteristics between small and large
cities. I consider the set of unique varieties transacted each year from 2005 to 2019 and compare
the share of varieties with each characteristic between the smallest ten cities and the largest ten
cities in my sample. Figure 3 shows that relative to smaller cities, there is a higher density of
older units and units with more rooms in larger cities. Transactions in smaller cities are located
close to the city center, while larger cities have a peak density between 10 to 30 miles from the city
center. For structure type, while both larger and smaller cities predominantly have transactions
that are single-family detached (reflecting the fact that I use housing sale data), transactions in
larger cities involve a more diverse set of structure types, including single-family attached and
multi-unit apartments. Figure A7 in Appendix F presents the full set of comparisons across all
characteristics.

A key parameter that governs how the differing choice sets affect household welfare in differ-
ent cities is the elasticity of substitution across housing varieties. If housing varieties are perfect
substitutes, then housing variety availability differences do not matter. However, when housing
varieties are imperfectly substitutable, availability differences will matter for welfare.
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Figure 2: Number of Varieties vs Population: Sensitivity to Characteristics
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Notes: Figure plots the percentage change in the estimated elasticity of the number of varieties against population as
each characteristic is dropped from the definition of a variety. A larger magnitude implies that the characteristic is a
more important source of variety differences in larger cities.

III Demand Model

To quantify the importance of housing variety availability differences, I develop utility-consistent
price indices motivated by a model of a household’s location decision and housing variety choice.
The model accounts for the fact that households do not consume a composite of housing services
over all varieties, but choose a single housing variety.

Since households substitute across housing varieties when faced with different prices and
choice sets, it is important to allow for flexible substitution patterns in the demand system. I
use a nested demand structure that partitions housing varieties into nests, where varieties within
a nest are more similar to each other than compared to varieties in other nests. As a result, my
nested CES price index summarizes housing prices and the available choice set of housing vari-
eties, while generating flexible substitution patterns by allowing varieties to be more substitutable
within nests.

The model builds upon earlier work investigating the link between CES and logit, including
Anderson, de Palma, and Thisse (1987, 1992) and Verboven (1995). However, there is a subtle
difference between my model and the discrete-continuous models in earlier work. The previous
literature has shown that the aggregate demand across all households with discrete-continuous
preferences is equivalent to a representative agent with CES preferences. Instead of integrating
over all households in a location, I instead consider the household’s expectation over their id-
iosyncratic housing variety shocks. This assumption then leads to the CES price index appearing
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Figure 3: Housing Characteristic Differences Between Small and Large Cities
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in the first stage of a household’s location choice problem.
The model has a sequential two-stage structure. Within a period t (omitted for simplicity), a

household j first chooses locations and then chooses a housing variety. Locations are denoted by
i = 1, ..., N and housing varieties are indexed by v ∈ Ωi, where Ωi denotes the set of housing
varieties available in location i.

In the first stage, a household j chooses a location i to reside in and decides how to allocate their
location-specific wages between housing and other consumption expenditures.18 In this location
choice, households evaluate a location-specific wage, amenities, idiosyncratic location draws, and
utility from other housing and other consumption. The utility from housing will be determined
by the household’s optimal behavior in the second stage.19

18Assumptions behind multi-stage budgeting are described in Blackorby et al. (1978) and Deaton and Muellbauer
(1980).

19I assume that households are forward-looking (in terms of the two stages), so households will anticipate their
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In the second stage, the household chooses a housing variety v and the square feet of hous-
ing services to consume in a nested discrete-continuous setup. Households pick a single variety
to consume, and then choose the square feet given their housing expenditure. Conditional on
location choices and housing expenditure, the nested discrete-continuous housing variety choice
means that total square feet demand for each variety across households in a city is equal to de-
mand by a representative household with nested CES preferences. This intensive-margin choice
of square feet allows a tractable first stage compared to a pure discrete-choice setup.20

I make a key timing assumption: the idiosyncratic housing variety preferences are not revealed
until the second stage, so that the household will choose a location and housing expenditures
in expectation of the idiosyncratic housing variety preference draws. As a result of the timing
assumption, the utility from expected housing services in the first stage will be a function of a
nested CES housing price index. In contrast to a standard hedonic approach, the nested CES price
index accounts for variety differences.

The timing assumption can be relaxed by considering a simultaneous choice over both loca-
tions and housing varieties. I show in Appendix B that I can generate the same location choice
probabilities as in the main model. Furthermore, the nested CES housing price index summa-
rizes the expected utility over the housing decision within a location. An important assumption
is that each household’s preference draws for a variety are uncorrelated across locations. Hence,
the timing assumption restricts the sorting of households on housing characteristics.21

III.1 Second Stage

To solve the household’s two-stage sequential problem, I work backwards from the second stage.
Household j has already chosen location i and housing expenditure EH

ij in the first stage. In the
second stage, the household faces a discrete-choice problem over housing varieties indexed by v
and a quantity decision of how much square feet to consume of that variety v, qivj.

max
v∈Ωi , qivj≥0

uivj = ln qivj + ln ϕiv + ε ivj (1)

s.t. pivqivj ≤ EH
ij

where ϕiv represents the quality of housing variety v in location i that is common across all house-
holds and ε ivj represents an idiosyncratic household quality draw for housing variety v in location

optimal choices in the subsequent stage.
20Dubé et al. (2022) discuss issues with expenditure aggregation in pure discrete-choice setups.
21A technical difference is that the simultaneous location and housing variety choice does not nest a Rosen-Roback

equilibrium, because the nesting structure implies that the elasticity of substitution across locations has to be less elastic
than the elasticity of substitution across housing nests. Hence, the elasticity of substitution across locations cannot tend
toward infinity as in a Rosen-Roback equilibrium.
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i.22 uivj can be interpreted as a quality-adjusted log square feet of housing services.23

Households will choose to spend all of their housing expenditure on housing variety v, so

that qivj =
EH

ij
piv

. Heterogeneity across households in their housing expenditure will then lead to
differences in square feet purchased. Substituting this quantity choice into (1), I can re-write the
optimization problem as

max
v∈Ωi

uivj = ln EH
ij − ln piv + ln ϕiv + ε ivj (2)

where ε ij is distributed i.i.d. across households from a distribution Fi. I assume that Fi takes on a
nested logit form where housing varieties are partitioned into K nests

Fi (~ε) = exp

− ∑
k∈ΩK

i

(
∑

v∈Ωik

e−εivj/ρk

)ρk/ρ


ΩK
i denotes the available nests at location i (where the superscript capital K denotes a set of nests)

and Ωik denotes the varieties available in nest k at location i. Finally, to be consistent with utility
maximization, 0 < ρk < ρ, ∀k.

Following the literature, it is standard to display a nested logit system as a tree diagram (note
that preference draws for housing varieties are not drawn sequentially, but simultaneously):

Figure 4: Nested Logit Demand System

Nest 1 Nest 2

Variety 1 ... Variety n

... Nest K

ρ Top Nest

ρk

Notes: Figure plots the nesting structure for a logit demand system with K nests. Nests form a partition over housing
varieties v. Although presented sequentially, the choice occurs simultaneously over housing nest k and variety v.

From McFadden (1981), the probability of choosing variety v is equal to

Pr(v∗j = v) = ϕσk−1
iv

(
piv

PH
ik

)1−σk
(

PH
ik

PH
i

)1−σ

(3)

22Notice that ϕiv allows for a nest-level quality shock that is common to all varieties within a nest k. Let ϕik(v) denote
the component that is common to all varieties within a nest k. Without loss of generality, ϕiv ≡ ϕik(v) ϕ̃iv. It is convenient

to normalize the quality shocks within a nest k, so that ∏v∈k ϕ̃iv = 1 so that (∏v∈k ϕiv)
1

Nk = ϕik(v).
23Anderson et al. (1989) show that a model where products are described by a bundle of characteristics and where

individuals have ideal levels of each characteristic (a Lancaster approach) is equivalent to a logit discrete-choice model
under certain conditions.
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where v∗j indicates household j’s optimal housing variety choice and I have defined ρ ≡ 1
σ−1 and

ρk ≡ 1
σk−1

PH
i =

 ∑
k∈ΩK

i

(
PH

ik

)1−σ

 1
1−σ

, PH
ik =

(
∑

v∈Ωik

ϕσk−1
iv p1−σk

iv

) 1
1−σk

(4)

Notice that the choice probabilities and price indices are homothetic as they do not depend on the
housing expenditure of household j.

III.2 First Stage

In the first stage, household j chooses a location i to live in and how to allocate their wages wij

between housing and non-housing consumption

max
i∈1,...,n, EH

ij ≥0, EC
ij≥0
Uij = Bi

(
UT

i (ET
ij)
)µi
(

UH
i (EH

ij )
)1−µi

zij (5)

s.t. EH
ij + ET

ij ≤ wij

where UT
i (ET

ij) is the utility of non-housing consumption as a function of other consumption ex-
penditure, UH

i (EH
ij ) is the utility of housing consumption as a function of housing expenditure, Bi

is the amenity of location i, and zij are idiosyncratic preference draws from a Fréchet distribution
with shape parameter ν > 1 over locations.24

For other consumption, there exists a price index PT
i in location i so that

UT
i (ET

ij) ≡
ET

ij

PT
i

At the first stage of the demand model, I assume that households know the housing prices,
quality, and the set of available varieties in each location. However, the idiosyncratic housing
draws ε are not yet realized. As a result, UH

i (EH
ij ) is the expected quality-adjusted square feet of

housing services.
Following the properties of GEV, the expected value of the optimal housing choice in location

i is

Eε

(
max
v∈Ωi

uivj(EH
ij )

)
= ln EH

ij +
1

σ− 1
ln

 ∑
k∈ΩK

i

(
∑

v∈Ωik

(
ϕiv

piv

)σk−1
) σ−1

σk−1
 (6)

To preserve the multiplicative form, I assume that UH
i (EH

ij ) is equal to the exponential of the
expected value of the optimal housing choice in the second stage:

UH
i (EH

ij ) = exp
[

Eε

(
max
v∈Ωi

uivj(EH
ij )

)]
24I assume that there is a single price/rent ratio that applies to all locations that converts housing prices to per-period

housing rents.
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The exponential form can be relaxed by using a multiplicative Fréchet set-up. In Appendix C, I
build upon Lind and Romando (2021) and define a multiplicative utility form with idiosyncratic
preferences drawn from a multivariate max-stable Fréchet distribution. I show that the multiplica-
tive Fréchet set-up generates the same choice probabilities and CES price indices as the nested
logit.

Taking the exponential of (6), the expected utility from housing services is equal to

UH
i (EH

i ) = exp
[

E

(
max
v∈Ωi

uivj(EH
ij )

)]
=

EH
ij

Pi

where the housing price index is given in (4).
I can now re-write the first stage optimization problem in (5) as

max
i∈1,...,n, EH

ij ≥0, ET
ij≥0
Uij = Bi

(
ET

ij

PT
i

)µ(EH
ij

Pi

)1−µi

zij (7)

s.t. EH
ij + ET

ij ≤ wij

The presence of the nested CES price index in the indirect utility for household j is not because
households have CES preferences and consume a composite bundle of housing varieties. Rather,
I have provided a micro-foundation for why households will behave as if they faced a nested CES
price index.

For any location i, the household’s optimal housing and other consumption expenditures can
be solved for in terms of wages

EH
ij = (1− µi)wij ET

ij = µiwij

Substituting this into the optimization equation now means that households choose a location
i, given the price index for other consumption PT

i and the housing price index PH
i

max
i
Vij = Bi

(
wij(

PT
i

)µi
(
PH

i

)1−µi

)
︸ ︷︷ ︸

Real Income

zij (8)

Real income is measured as wages over a Cobb-Douglas price index over other consumption
prices and housing prices. This choice of Cobb-Douglas can be interpreted as a first-order approx-
imation of a general utility function as in Albouy (2011). Compared to the standard approach in
the urban literature, rather than a hedonic housing price index, PH

i is a nested CES price index
that accounts for substitution and availability of housing variety.

Using the fact that zij are idiosyncratic preference draws from a Fréchet distribution, the prob-
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ability of choosing location i for a household j is given by

Pr(i∗j = i) =

(
Bi

wij

(PT
i )

µ
(PH

i )
1−µ

)ν

∑`

(
B`

w`j

(PT
` )

µ
(PH

` )
1−µ

)ν (9)

As ν → ∞, utilities are equalized across locations so that the model nests a Rosen-Roback
equilibrium.

III.3 Market-Level demand

Let qiv denote the total demand of square feet of variety v in location i. Integrating over all house-
holds in a location i, the total square feet demand of each variety is

qiv(pit,ϕit; σ) = ϕσk−1
iv

p1−σk
iv

(PH
ik )

1−σk

(PH
ik )

1−σ

(PH
i )

1−σ
EH

i (10)

where the emphasis indicates the full vector of prices and quality shocks, and EH
i is the total

housing expenditure of households that decide to reside in location i

EH
i =

∫
j: i∗j =i

(1− µ)wijdj

where i∗j indicates household j’s optimal location choice.
This market-level demand is equivalent to demand generated by a representative agent with

nested CES preferences (see Anderson et al. (1987) and Verboven (1995)). This illustrates the close
connection between the expected value of the maximum preference draw and CES price indices
alluded to previously.

IV Estimation Strategy

This section describes my estimation strategy for the parameters of the nested CES housing price
indices: the nesting structure, the lower-level elasticities of substitution across varieties within
each nest, and top-level elasticity of substitution across nests. Standard approaches to estimating a
nested demand system use a pre-specified nesting structure and sequentially estimate the demand
parameters from the lowest-level to the top-level (McFadden 1980, Goldberg 1995, Hottman, Red-
ding, and Weinstein, 2016).25 I follow a similar sequential approach and consider the joint problem
of estimating both the nesting structure and the demand parameters.

As a first step, I develop an estimation approach for the lower-level nest parameters assuming
that I know the true nesting structure. I derive a structural estimating equation from the market-

25Given a nesting structure, researchers have also proposed jointly estimated all demand parameters using maximum
likelihood.
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level demand of each variety in each market, where a market is defined as an MSA and year.
Since prices and quantities are determined in equilibrium, I make two identifying assumptions
to address omitted variable bias. First, I assume that the quantity supplied response from home-
owners is absorbed by a rich set of fixed effects. Second, I assume that conditional on the fixed
effects, shocks to quantity supplied are uncorrelated with quality shocks. A key fixed effect is the
nest-level fixed effect in each market, which absorbs the structural nest-level price indices.

These two identifying assumptions are reasonable since 85% of transactions are for second-
hand homes. Decisions by homeowners to sell their homes (e.g., new job offer in different area,
kids leaving for college) drive changes in quantity of square feet supplied that are uncorrelated
with quality shocks. Based on these two identifying assumptions, I can regress price per square
feet on the total quantity of each variety to identify the inverse elasticities of substitution.

Next, I propose a panel method to jointly estimate both the nesting structure and the lower-
level elasticity of substitution within each nest. The panel method builds upon the estimating
equation developed in the first part when the nests are known; it minimizes a least squares crite-
rion with respect to the demand parameters and all possible partitions of varieties into nests. A
data-driven nesting approach is important since 1) it is not obvious how to assign housing vari-
eties into nests and 2) a pre-specified nesting structure is not guaranteed to correspond to the true
utility specification.

My proposed method to estimate the nesting structure is a new application of the Group Fixed
Effects (GFE) estimator from Bonhomme and Manresa (2015). The key idea behind the method
is that varieties within a nest share the same elasticity of substitution and the same nest-level
price index across markets. To identify the nests, I make a third identifying assumption that the
nest-level fixed effects in each market are on average different across nests.

There are two key advantages of the joint estimation method. First, the proposed method uses
systematic variation in prices and quantities in a structurally consistent way. In contrast, clus-
tering housing varieties based on observable housing characteristics will form groups of housing
varieties that are similar to each other. However, there is no guarantee that these groups are the
nests that are relevant for household substitution patterns. Second, since only data on quantities
and prices are needed, this estimation approach can be utilized in other settings where there is
less data available on variety characteristics.

Given the estimates of the nesting structure and the lower-level elasticity of substitution, I
then proceed to estimate the top-level elasticity of substitution across nests using two approaches.
The first approach assumes that conditional on the fixed effects, the quantity variation at the nest
level is uncorrelated with nest-level quality shocks. The second approach builds upon Hottman,
Redding, and Weinstein (2016) and utilizes the structure of CES nests.

To evaluate the accuracy of the joint estimation procedure, I provide results from Monte Carlo
simulations. In each simulation, I randomly assign varieties to nests and randomly draw lower-
level and top-level parameters. Generating quality and quantity shocks, I can solve for the equi-
librium prices and expenditure shares in each period. I then apply my proposed method and
demonstrate that the nest-level demand elasticities are estimated precisely.
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IV.1 Estimating Lower-Level Elasticities with Known Nesting Structure

As a first step, I describe my estimation approach for the lower-level demand elasticities given the
true nesting structure. Given the mapping from housing variety v to nest k, denoted by k(v), I can
take logs of the market-level nested demand equation (10) and write prices in terms of quantities,
price indices, and quality shock

ln pivt = −
1

σk(v)
ln qivt +

σk(v) − σ

σk(v)
ln PH

ik(v)t +
σ− 1
σk(v)

ln PH
it +

1
σk(v)

ln EH
it +

σk(v) − 1
σk(v)

ln ϕivt (11)

where i is MSA, v denotes a housing variety, and t is time.
Consider the following estimating equation for the inverse-demand elasticities

ln pivt = −
1

σk(v)
ln qivt + αik(v)t + αiv + αivt + εivt (12)

where αik(v)t are MSA X nest X year fixed effects, αiv are MSA X housing variety fixed effects, and
αivt are linear time trends for each housing variety in each MSA. The estimation strategy is to
identify the inverse demand elasticity of each nest with changes over time in the supply of square
feet for each housing variety, and relative changes across varieties within each nest in each MSA.

It is helpful to map the estimating equation to the structural market-level demand equation.
The nest-level fixed effects in each market (αik(v)t) absorb the price indices and aggregate expen-

diture
σk(v)−σ

σk(v)
ln PH

ik(v)t +
σ−1
σk(v)

ln PH
it +

1
σk(v)

ln EH
it . The nest-level fixed effects in each market further

absorb quantity and quality shocks that are common across varieties within each nest in each
market. The variety-level fixed effects and variety-level time trend (αiv, αivt) absorb market-level
persistent components of quantity and quality shocks ϕivt. Thus, the regression residual corre-
sponds to

εivt ≡
σk(v) − 1

σk(v)
ln ϕivt

where ϕivt are the variety quality shocks. Appendix Section D.5 derives all three fixed effects in
terms of fundamentals.

IV.2 Identifying Assumptions

Identification of the inverse demand elasticity requires that conditional on the fixed effects, quan-
tity of square feet of variety v in market it is uncorrelated with quality shocks26

E[(ln qivt) (ln ϕivt) |αik(v)t, αiv, αivt] = 0 (13)

There are two sources of omitted variable bias in the demand estimation that the estimation
strategy addresses. First, simultaneity bias can arise since demand and supply are determined

26E[ln ϕivt|αik(v)t, αiv, αivt] = 0 by the normalization discussed in footnote 22.
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jointly in equilibrium.27 Second, shocks to the quantity supplied of square feet may be correlated
with quality shocks.28

The two sources of omitted variable bias can be seen by writing down a structural supply
equation

ln qS
ivt = ln fit(pit) + ln ωivt

where the first term ln fit(pit) denotes the endogenous supply response by homeowners that is a
function of prices, while the second term ωivt denotes the quantity supply shock. In equilibrium,
quantity supplied is equal to quantity demand for each variety in each market. Hence, I can
rewrite the identifying assumption in (13) as

E[(ln fit(pit)) (ln ϕivt) |αik(v)t, αiv, αivt] + E[(ln ωivt) (ln ϕivt) |αik(v)t, αiv, αivt] = 0

The first term on the LHS corresponds to covariance between the supply response by homeowners
and the quality shock, while the second term on the LHS corresponds to the covariance between
supply shocks and quality shocks.

In the supply equation, I focus on homeowners rather than new construction. Second-hand
houses are the primary component of housing supply: 85% of housing transactions are for second-
hand houses in my sample period (NAHB). Household decisions to move (and hence the decision
to sell), are often unrelated to housing prices, generating exogenous variation in supply. Based
on the March CPS supplement from 2005-2019, the majority of moves between 2005-2019 are for
reasons unrelated to current housing prices, with 43% of moves due to family or employment
reasons, 5% due to other non-housing reasons, and 19% wanting a better neighborhood, or new
or better housing.29

Assumption 1: The fixed affects absorb the endogenous supply response by homeowners, so
that

E[(ln fit(pit)) (ln ϕivt) |αik(v)t, αiv, αivt] = 0

I assume that the panel fixed effects address simultaneity bias by absorbing the effect of expected
variety prices on quantity supplied. In Appendix D, I justify this assumption by deriving a market
equilibrium when homeowners are not able to perfectly anticipate the price of their variety at the
beginning of the period.30 I assume that homeowners have rational expectations: homeowners
understand the endogenous supply response and the fact that prices will clear the quantity sup-
plied of floor space in the market equilibrium. I show that the quantity supplied is increasing in

27Since long-run new housing supply elasticities at the MSA level exist in the literature (Saiz 2010), one might use
those elasticities to identify the demand curve. However, since around 80% to 90% of housing transactions are for
second-hand homes, long-run new housing supply elasticities in the literature are not necessarily informative about
the short-run supply elasticity of second-hand homes.

28It is standard in the trade literature to assume uncorrelated demand and supply shocks conditional on differencing
over time and against a comparison product. For example, see Leamer (1981), Feenstra (1994), and Broda and Weinstein
(2006).

29The remaining categories are 3% for cheaper housing and 7% for other housing reasons.
30See Anenberg (2014) and Qian, Mateen, and Zhang (2021) for evidence of imperfect expectations of the housing

price.
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two sets of parameters. The first set is composed of expected price indices and expected aggregate
housing expenditure. The second set is composed of the expected quality shock and the expected
supply shock.

Assumption 1 requires that the panel fixed effects absorb both sets of parameters. It is reason-
able that the next-level fixed effects in each market αik(v)t absorb the parameters in the first term:
the expected price indices and expected aggregate housing expenditures. This assumption is mild,
allowing for the case where homeowners can perfectly foresee the aggregate price indices and ex-
penditures or for the case where homeowners have adaptive expectations and form predictions
based on previous aggregate prices and expenditures. For the second set of parameters, this will
be absorbed by the three sets of fixed effects when homeowners generate an expectation for their
variety’s quality and supply shock based on three MSA-specific components: the nest average in
the time period, the variety’s average over time, and the variety’s average growth.

It is worth discussing how my estimates will be affected if the form of expectations is incorrect.
Suppose that homeowners perfectly observe variety prices rather than forming an expectation and
supply shocks are uncorrelated with quality shocks. When the estimated coefficient is negative (as
I find empirically), it will be an upward-biased estimate of the true inverse demand elasticity. In
other words, the demand elasticity is overestimated.31 Since the impact of variety differences in
the housing price index is decreasing in the demand elasticity, the estimated welfare impact of
variety differences across space will be a lower bound of the true welfare impact.

Assumption 2: After controlling for the fixed effects, supply and quality shocks are uncorre-
lated

E[(ln ωivt) (ln ϕivt) |αik(v)t, αiv, αivt] = 0

This assumption is reasonable given the fact that 85% of the market are second-hand homes.
Since ln ωivt are supply shocks that are unrelated to expected price of a variety, decisions of house-
holds to move (e.g., a new job offer, school district for children) are uncorrelated with the quality
shock of their current housing variety.

One potential concern are moves to a better neighborhood or better home. If these moves are
due to negative quality shocks of the current housing variety rather than due to the quality shock
of a new home, this would induce a negative correlation between quality and supply shocks.
However, with the inclusion of the three sets of fixed effects, several types of key quality shocks
are absorbed. These include quality shocks for all varieties in the nest in a market, persistent
quality shocks for a variety in an MSA, and persistent growth in the quality shock for a variety
in an MSA. For there to be substantial bias, the quality shock of a variety has to be idiosyncratic
compared to other varieties in the nest and has to deviate from the persistent trend and mean
across time.

Given Assumptions 1 and 2 and the true nesting structure, the identifying assumption in (13)
is satisfied and the inverse elasticities of substitution are identified. Notice that the elasticity of
substitution across nests (σ) does not have to be identified at this stage of the estimation process.

31This bias is formalized and discussed in Leamer (1981).

19



Since I include nest-level fixed effects in each market, I compare variation in prices and quantities
between varieties in the same nest. Thus, substitution across nests is absorbed by the nest-level
fixed effects.

IV.3 Unknown Mapping Between Housing Varieties and Nests

I propose a method that solves the joint problem of estimating nest parameters and nest mem-
bership for K nests. The method is a new application of the panel Group Fixed-effects Estimator
(GFE) from Bonhomme and Manresa (2015). Building upon the panel estimation equation (12)
based on the structural market-level demand for a variety, I consider the joint problem of estimat-
ing both the lower-level elasticities of substitution and the nesting structure. Let k(v) denote the
nest membership of each variety v, so that k(v) ∈ {1, ..., K}.32

(σ̂k, α̂, k̂) = argmin
(σk ,α,k)∈ΣK×AKNT×ΓK

N

∑
i=1

T

∑
t=1

∑
v∈Ωit

(
ln pivt +

1
σk(v)

ln qivt − αik(v)t − αiv − αivt

)2

︸ ︷︷ ︸
εivt

(14)

The key idea behind this estimation approach is that varieties in a nest share the same elasticity
of substitution and the same nest-level price indices and quality shocks. These common parame-
ters correspond unobserved nest-level heterogeneity that can be estimated. As a preliminary step
to reduce the computational burden and simplify the identifying assumptions, let ln p̃ivt and ln q̃ivt

denote the residualized price and quantity with respect to their variety X MSA average (removing
αiv) and variety and MSA specific linear time trends (removing αivt).

To solve the problem, I utilize an iterative procedure that solves the optimization problem for
subsets of the parameters.33 With a known nest membership, k(v), then the fixed effects regres-
sion discussed in the Section IV.1 can be used to solve the least-squares criterion to estimate σk.
Choosing (σ̂k, α̂) to minimize the least-squares criterion corresponds exactly to a standard fixed
effects regression in (12).

Consider the case when the elasticities of substitution are known but the nest assignment is
not known. With a known σk, ln p̃ivt +

1
σk(v)

ln q̃ivt can be computed. Then, minimizing the least-
squares criterion with respect to all possible partitions of varieties into nests and nest-level fixed
effects, (α̂, k̂), is exactly the objective of the k-means clustering algorithm. Although this is a
challenging problem, the k-means algorithm is tractable and widely used in machine learning
and engineering.34

32To see how the data structure maps to Bonhomme and Manresa, the groups are nests, the “time” variable is MSA
x year, and the “individuals” are housing varieties. As a result, nest x MSA x year fixed effects, which absorb the
nest-level price index for each market, are the group x time fixed effects.

33See Wright (2015) for a discussion of coordinate descent algorithms in solving problems with smooth and convex
constraints.

34k-means has been used recently in the literature to cluster firms and households based on observable characteristics
(e.g., Epple et al. 2020, Setzler and Tintelnot (2021), Almagro and Domı́nguez-Iino 2022). However, this contrasts
with my proposed approach which solves a structural estimating equation with respect to both parameters and nest
assignment. Rather than clustering on characteristics of a variety, my approach groups varieties based on systematic
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To further understand how the estimation works, it is useful to define the centroid of the nest.
The nest centroid in each market is the average of the data points

(
ln p̃ivt +

1
σk(v)

ln q̃ivt

)
over all

varieties assigned to the nest, or equivalently, the nest-level fixed effect in each MSA and year

αikt ≡
1

Nk
∑

k∗(v)=k

(
ln p̃ivt +

1
σk(v)

ln q̃ivt

)

where Nk is the number of varieties assigned to nest k, or Nk = ∑v 1k∗(v)=k. The k-means algo-
rithm iteratively assigns each variety to the nest with the nearest centroid. At each iteration of the
algorithm, the nest centroid is re-defined with the updated nest assignment. Thus, the k-means
algorithm converges when there is a stable set of nests such that no variety can be re-assigned. See
Appendix E for estimation details.

Given that we know how to solve the optimization problem for subsets of the optimization
variables, I proceed using an iterative algorithm based on k-means to solve for nest membership
and a fixed effect regression to solve for the inverse demand elasticity. The proposed algorithm
differs from Algorithm 1 proposed by Bonhomme and Manresa. One concern with k-means clus-
tering algorithms is the sensitivity to initial nest centroids. My algorithm is able to exploit the
performance of k-means++, which is an algorithm that improves the selection of the initial cen-
troids (Arthur and Vassilvitskii 2007).35

To jointly identify the nesting structure and demand parameters, I make an additional assump-
tion that the nest-level fixed effects are well-separated.

Assumption 3: On average, the nest-level fixed effects in each market are asymptotically dif-
ferent across nests

plimM→∞
1
M

M

∑
m=1

(
α̃0

km − α̃0
k̃m

)
= cFE

kk̃ > 0, ∀k 6= k̃

where I subsume both MSAs and years into a market dimension m so that M denotes the total
number of markets. α̃0

km denotes the demean and detrended nest-level fixed effect and the super-
script 0 denotes the true parameter value.36 This adjustment is necessary due to the preliminary
step where I demean and detrend prices and quantities to account for (αiv, αivt).

Given Assumptions 1-3, joint estimation of the lower-level elasticities of substitution and the
nesting structure is both consistent and asymptotically well-behaved following Bonhomme and
Manresa (2015).

variation in prices and quantities consistent with a nested CES demand system.
35For the size of my estimation data, the algorithm also reduces computation time as I do not need to repeatedly

estimate the fixed effect regression at every step. To check sensitivity of my results to the algorithm, I use both the algo-
rithm suggested by Bonhomme and Manresa as well as my proposed algorithm and choose the solution that minimizes
the least squares criterion.

36Bonhomme and Manresa consider the case where there are only unit fixed effects. Since I consider both unit fixed
effects and a unit time trend, α̃0

km corresponds to the residual of α0
km = γm + γmt + α̃0

km. With only unit fixed effects, the
nest-level fixed effects cannot be parallel. With both unit fixed effects and unit time trends, the difference between the
nest-level fixed effects cannot be linear across time.

21



Number of Nests

To find K, the number of nests, I follow Bonhomme and Manresa (2015) and consider a BIC crite-
rion based on Bai and Ng (2002). The BIC trades off the reduction in the least squares criterion in
(14) as the number of nests increase, with the increase in the number of parameters that have to
be estimated (corresponding to the nest-market level fixed effects). See Appendix H.1 for details
on the BIC criterion.

IV.4 Estimation of Top-Level Elasticity

Using the estimated nesting structure and the lower-level elasticities of substitution, I can then
proceed to estimate the top-level elasticity of substitution that governs the substitution across
nests. I develop two estimation strategies for the top-level elasticity of substitution σ. Both ap-
proaches rely on the fact that the nest-level price index can be recovered up to the geometric mean
of relative variety quality shocks.

The first approach builds upon the lower-level nest estimation and develops a panel estimation
approach that assumes the nest-level quantity index is exogenous. The second approach uses the
dispersion of shares within a nest as an instrument for the nest-level price index. The idea behind
the instrument is that dispersion in shares within a nest will be uncorrelated with the nest-level
quality shock.

I find that both approaches produce similar estimates of σ in Monte-Carlo simulations and in
estimation with the housing transaction data. The similarity of the estimates supports my assump-
tion that quantities are exogenous conditional on the fixed effects in the top-level estimation.37

For estimation, it is helpful to separate the variety quality shock into a nest-level component
and a relative variety-level component. Let ϕik(v)t denote the component that is common to all
varieties within a nest k. Without loss of generality,

ϕivt ≡ ϕik(v)t ϕ̃ivt

where ϕ̃ivt is the within-nest relative quality shock for variety v.
Following Hottman et al. (2016), the nest-level price index can be expressed as

ln Pikt = ln Pikt +
1

1− σk
ln

[
∑

v∈Ωikt

SK
ivt

SK
ikt

]
− ln ϕ̃ikt (15)

where SK
ivt denotes the within-nest k expenditure share on variety v in market it. The line above a

variable denotes the geometric mean across varieties within a nest, so

ln Pikt =
1

Nikt
∑

v∈Ωkt

ln pivt, ln SK
ikt =

1
Nikt

∑
v∈Ωkt

ln SK
ivt, ln ϕ̃ikt =

1
Nikt

∑
v∈Ωkt

ln ϕ̃ivt

37I formally test this using a J-test with the share instrument from Hottman et al. (2016) and the quantity index as an
additional instrument.
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The first two components of the nest-level price index are computable given estimates of the
lower-level elasticities of substitution. The first term in (15) is the geometric average of variety

prices within nest k. The middle term in (15), 1
1−σk

ln
[

∑v∈Ωikt

SK
ivt

SK
ikt

]
, is composed of 1) the inverse

of one minus the nest-level elasticity, 2) the average of shares relative to the geometric mean of
shares. This term reflects a love of variety. As shares become more dispersed, the nest-level price
index decreases (as σk > 1). When varieties are symmetric, then SK

ivt = SK
ikt so that the second

term is simply the log number of varieties in nest k. If the elasticity of substitution tends towards
infinity, then the CES price index is the geometric mean of quality-adjusted housing variety prices.

The third term is the geometric mean of relative variety-level quality shocks. Note that it is not
possible to separately identify the nest-level quality shock and the relative variety-level quality
shock. Hence, a normalization is needed. Following Hottman, Redding, and Weinstein, I consider
the following normalization of the relative variety-level quality shocks: ∏v∈Ωikt

ϕ̃ivt = 1. As a
result, after taking logs the third term in (15) is zero.

Estimation Approach 1: Panel

I consider an estimating equation similar to the one for the lower nest that treats the nest-level
quantity as exogenous. The inverse market-level nest demand equation can be written as

ln Pikt = −
1
σ

ln Qikt +
σ− 1

σ
ln Pit +

σ− 1
σ

ln ϕikt

where
Qikt ≡ ln Sikt − ln Pikt + ln Eit

where Sikt denotes the share of nest k in market it and Eit is total expenditure at location i at time t.
The price index for nest k is decreasing in the quantity index, increasing in the overall price index,
and increasing in the nest-level ϕikt quality shock.

If quantity supplied is exogenous after controlling for the set of fixed effects, I can estimate

ln Pikt = −
1
σ

ln Qikt + αit + αik + αkt + εikt

Estimation Approach 2: IV

The middle term in (15) can be used as an instrument for the nest-level price index. Specifically,
it can be used as an IV in a regression of nest shares on the nest price index to identify the top
elasticity of demand σ. I consider the structural equation of shares on prices

ln Sikt = (1− σ) ln Pikt + (σ− 1) ln Pit + (σ− 1) ln ϕikt

where Sikt can be directly computed from expenditure shares and Pikt can be computed (up to an
unobserved additive constant γik that is specific to each MSA X nest) by (15).
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The estimating equation is given as

ln Sikt = (1− σ) ln Pikt + αit + αik + αkt + εikt

The overall price index Pit is absorbed by the αit, or MSA x year fixed effects, nest-level quality
shocks common across all MSAs are absorbed by the αkt, or nest X year fixed effects, and nest-level
quality shocks persistent in an MSA are absorbed by αik, or MSA X nest fixed effects.

The identifying assumption of the IV is that the relative shares of each variety purchased
within a nest only affect the share of the nest in overall expenditure through the nest price index.
This holds when the IV is uncorrelated with the nest-level quality shock ϕikt since the nest-level
quality shock does not impact the relative within-nest share of variety A and variety B that both
belong to the same nest.

IV.5 Monte Carlo Simulations

I perform Monte Carlo simulations to validate the proposed lower-level and top-level estimation
strategies. I show that the lower-level estimation strategy is highly accurate in recovering the true
nest assignment and lower-level elasticities of substitution. I then show that both the panel and
IV approaches yield accurate estimates of the top-level elasticity of substitution.

I generate random nesting structures, quantity supplied, and qualities of each variety. I con-
sider a two-layer nested CES for 1000 varieties in a single location for 14 periods. The top elasticity
of substitution is drawn uniformly between 3 and 5 while the within nest-level elasticities of sub-
stitution are drawn uniformly between 7 and 15. To assign varieties to nests, I draw a quality
shock from a log-normal distribution. I then generate cutoffs on this distribution to separate the
varieties into 12 nests. For each variety, I further draw a persistent quantity and quality from log-
normal distributions. For each period, I generate multiplicative i.i.d. shocks to quantity, quality,
and expenditure. See Appendix E for further details.

Given the nesting structure, quantities, and qualities, I can solve for variety prices that equate
quantity supplied and quantity demanded. I further set 20% of data to be randomly missing. I
then use both the algorithm suggested by Bonhomme and Manresa as well as my proposed algo-
rithm to recover σ̂k and σ̂ in 2000 simulations. I find similar accuracy between the two algorithms,
with my proposed algorithm resulting in lower run-times.

I find that the estimation approach is able to recover the nest assignment of each variety and
yields precise estimates of σk. The top panel of Figure 5 shows percentage of varieties that are
correctly assigned. I find a mean accuracy of 99.2%, a median of 99.7%, and a minimum accuracy
(across 2000 simulations) of 84.8%. The bottom panel of Figure 5 shows the percent difference
between the estimated nest elasticity and the true nest elasticity across all simulations. I find that
almost all of the elasticities differ by less than 5% from their true value, with the mean of the
absolute percentage difference equal to 1.1% and median of the absolute percentage difference
equal to 0.7%.

The accuracy in the assigned mapping decreases when the top elasticity is larger: the correla-
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Figure 5: Nest Level Monte Carlo Results

(a) Across Simulations: Fraction of Varieties
Correctly Assigned

(b) Percent Error in Estimated Sigma at Variety
Level

Notes: Details of Monte Carlos Simulations in text. Left figure presents the fraction of varieties assigned to the correct
nest (allowing for multiple estimated nests to match with a single true nest). The right figure presents the estimated
percentage error in the lower-level elasticity of substitution.

tion between the accuracy rate and top elasticity is -0.58. This suggests that when the elasticity of
substitution is closer between the top level and the nest, it is harder to differentiate the nest-level
fixed effects.38 I further find that the accuracy of the assigned mapping is decreasing in the vari-
ance of the persistent quality shock ϕv and increasing in the variance of the persistent quantity
shock qv.

Using the estimated lower-level nesting structure and elasticities of substitution, I then esti-
mate the top-level elasticity with both approaches described in Section IV.4 . I find that the panel
and IV approaches yield almost identical results so I only present the IV results in Appendix Figure
A4. I find a mean absolute percent error of 1.1% for both approaches. Although 95% of estimates
have less than a 5% error, there is asymmetry in the error distribution. I find that there is a positive
correlation of 0.42 between the true top elasticity and the absolute percent error, suggesting that
the right tail of the histogram is due to the lower accuracy in the first step estimation of the nest
elasticities when the top elasticity is close to the nest elasticities.39

38To see why, the coefficient on the nest-level price index in the estimating equation is given by
σk(v)−σ

σk(v)
, so that when

the elasticity of substitution between the top level and the nests are more similar, the nest-level price index plays a
smaller role in the nest-level fixed effect. This is related to Bonhomme and Manresa’s group-separation property, or
where the group fixed-effects have to be asymptotically different.

39When I use the true nest assignments and the true nest elasticities, the IV and panel approach for the top elasticity
yield highly accurate and symmetric error distributions. The 1st percentile of the percent error distribution is -0.6% and
the 99th percentile is 0.5% for the IV approach.
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V Data

In this section, I describe the data sources that I use to measure housing price indices and real
income across metropolitan areas. I use housing characteristics and transaction data from the
Zillow Transaction and Assessment Dataset (ZTRAX), mortgage applicant data from the Home
Mortgage Disclosure Act (HMDA), and household-level wage and demographic data from the
American Community Survey (ACS) obtained from IPUMS. To verify the quality of the housing
transaction data, I replicate the S&P Case-Shiller repeat sales index for 18 of the overlapping MSAs
and show a high correlation in the time-series. Finally, I discuss how I aggregate from transactions
to variety-level prices and expenditure shares.

V.1 Data Description

V.1.1 Housing Transaction and Characteristics

To construct housing price indices, I require arms-length data on housing transactions along with
associated housing characteristics and square feet. I use data from ZTRAX, restricting attention to
transactions between 2005 and 2019.40 The Transaction data includes legal proceedings processed
by county recorder’s offices while the Assessment data includes data from county assessor offices.
Note that alternative data sources on housing sales data from ACS or the American Housing
Survey are not based on market transaction prices, typically do not include square feet, or lack
broad geographic coverage.

To define housing varieties, I require detailed data on observable housing characteristics. ZTRAX
is well suited for this as it contains unit and structure specific characteristics such as structure type,
structure-built year, lot size, number of rooms, number of bedrooms, number of floors, number of
bedrooms, location (property address), and square feet. To classify the unit’s structure type, I fol-
low categories commonly used in the housing literature based on the American Housing Survey
(AHS) or American Community Survey (ACS). Further details are described in Appendix F.

I clean the transaction data in two main ways: 1) restricting to arms-length transactions, 2)
dropping transactions that have outlier sales prices or square feet. Since housing deeds are used
to record transactions between family members, I restrict attention to arms-length transactions by
focusing on a select subset of deed types. As there may be several transactions associated with
a single property, I keep one transaction per property per month and take the maximum sales
price if there are multiple transfer records. I drop transactions where the sales price is missing,
less than 30,000 or greater than 10 million, and properties where the square feet is less than 100
or greater than 20,000. Finally, I drop transactions where the year built (or the most recent year
when there is new construction or major rehabilitation) is after the transaction date since property
characteristics may have changed.41

40This ensures broad coverage as certain counties only report data back to the mid-2000s.
41This is similar to the data-cleaning process in Gindelsky et al. (2020) and Graham and Makridis (2020). The sales

price cutoffs correspond to the 6th percentile and 99.97 percentile. The square feet cutoffs correspond to the 1st per-
centile and 99.8 percentile. Nowak and Smith (2020) show that there may be systematic differences in housing reno-
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Finally, due to concerns of missing housing characteristics and the bias that may entail in the
spatial price indices, I restrict attention to a subset of MSAs for which there is a high percentage
of non-missing characteristics or for which there is a sufficient number of transactions with non-
missing characteristics. Specifically, I restrict attention to 98 of the top 200 MSAs (by 2010 census
population) that meet a minimum number of transactions with non-missing characteristics.42

I find that the restriction alleviates the concern that the variety effects I find are due to missing
characteristics in smaller MSAs. Prior to the restriction, the correlation between the MSA pop-
ulation rank and the fraction of transactions with non-missing characteristics across the top 200
MSAs is -0.15. This means that larger MSAs have a lower fraction of non-missing characteris-
tics. However, once I focus on the 98 MSAs in my final sample, I find that the same correlation is
0.36, alleviating the concern of systematically missing characteristic data in smaller cities.43 The
restricted sample includes 40 out of the top 50 MSAs and 70 out of the top 100 MSAs. A list of the
MSAs and average number of transactions and transactions with non-missing characteristics are
presented in Appendix G.

V.2 Variety and Summary Statistics

I provide details on the construction of a housing variety. My definition of a variety is based on
several standard characteristics, such as the number of rooms, bathrooms, bedrooms, and floors.
Table 1 contains the other categories used in the definition of a housing variety, including: the
decade that the structure was built (or most recently renovated), the structure type, the distance
from the city center, and quantiles of the lot size. Across my entire sample, these granular char-
acteristics generate 152 thousand unique varieties. See Table A3 for additional summary statistics
on the fraction of housing units with the different characteristics.44

Next, I present summary statistics number of varieties and transactions across markets, and
distribution statistics on prices and square feet. The first two columns of Table 2 are statistics on
the distribution of the number of varieties across MSA-years and the number of transactions for a
variety-MSA-year. Columns 3 to 5 present statistics on the sales price, square feet, and price per
square feet across transactions in the entire sample. There is an average of 2800 varieties within
an MSA-year and an average of five transactions within a variety-MSA-year. The average unit
transacted in the sample has a square foot of 2,100, with a sales price of $300,000.

vation and quality along the business cycle that may bias standard housing price indices including Case-Shiller. Since
my focus are cross-sectional comparisons rather than time-series comparisons, unobserved quality change over the
business cycle may not be as much of a concern.

42Out of the 98 MSAs, there are four that belong to non-disclosure states, where county governments are prohibited
from disclosing sales price information to the public. These include Dallas, Houston, Memphis, and St. Louis. These
98 MSAs either have an average of 5,000 transactions per year with non-missing characteristics, or at least an average
of 2,000 transactions per year with non-missing characteristics and for which at least 50 percent of all transactions have
non-missing characteristics.

43Hence, if anything my results are potentially underestimating the impact of varieties. However, this concern is
potentially alleviated by the robustness of the ACS sensitivity check in Figure A5. I also find that the estimated demand
parameters are robust to only considering top 50 MSAs, where I have a more complete sample.

44The number of rooms is top-coded at 8, and the number of bathrooms, bedrooms, and floors are top-coded at 5.
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Table 1: Example Characteristics and Categories

Decade Built Structure Type Distance from Lot Size
City Center

Pre 1900s Single-family detached 0-5 miles Quantile 1: 0 - 0.12 acres
1900 - 1910 Single-family detached 5-10 miles Quantile 2: 0.12 - 0.17 acres
1910 - 1920 Apartments 10-20 miles Quantile 3: 0.17 - 0.24 acres
1920 - 1930 2 20-30 miles Quantile 4: 0.24 - 0.50 acres
1930 - 1940 3-4 30+ miles Quantile 5: 0.50+ acres
1940 - 1950 5-9
1950 - 1960 10-19
1960 - 1970 20-49

... 50+
2010 - 2020

Notes: Quantiles of lot size based off housing transactions in Zillow’s ZTRAX data. Central Business Districts (CBDs)
are obtained from Manduca (2020) who uses an algorithm based on relative employment to population densities.

Table 2: Summary Statistics: ZTRAX Data (98 MSAs from 2005-2019)

# Varieties # Transactions Sales Price Sq Ft Price per Sq Ft
MSA-Year Variety-MSA-Year

Mean 2,843 4.7 $301,944 2,113 $171.2
10th pctile 871 1.0 80,000 1,020 $50.5
25th pctile 1,336 1.0 $138,000 1,329 $79.2
50th pctile 2,150 1.0 $227,500 1,826 $119.4
75th pctile 3,694 3.0 $364,000 2,560 $182.6
90th pctile 5,961 8.0 $565,000 3,478 $292.9

Notes: A variety is defined as the full interaction of the decade the housing structure was originally built (or
underwent substantial renovation), number of rooms, number of bedrooms, number of bathrooms, number of floors,
structure type, lot size quintile, and distance categories from the MSA central business district (CBD). Summary
statistics on sales price, square feet, and price per square feet are computed over all transactions.

V.3 ZTRAX Data Verification

To verify the quality of the ZTRAX data, I check to see whether constructed repeat-sales indices
are similar to the S&P Case-Shiller Indices. I follow the S&P CoreLogic Case-Shiller Home Price
Indices Methodology (2020) and construct arithmetic repeat-sales methodology for the set of over-
lapping MSAs. I find that across 18 MSAs, my constructed Case-Shiller tracks the S&P index
closely, with a raw correlation of 0.96 (see Figure A6 for a further comparison).

V.4 Variety-level Prices

Since I observe housing sales at the transaction level, I aggregate sale prices and square feet to the
variety level. Let Ωivt denote the set of the transactions (indexed by s) of a specific variety v in
MSA i in year t. The price per square foot of a variety is defined as the total sales of a housing
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variety divided by the total quantity of square feet transacted

pivt =
∑s∈Ωivt

Vivts

∑s∈Ωivt
qivts

≡ ∑
s∈Ωivt

qivts

∑s′∈Ωivt
qivts′

pivts

where Vivts is the sale price of transaction s and qivts is the square feet of transaction s. Thus, the
variety price is a quantity-weighted average of the price per square feet of each transaction.

Analogously, the quantity of a housing variety is simply the sum of quantities across transac-
tions, or

qivt = ∑
s∈Ωivt

qivts

The share of expenditure on a housing variety is

sivt =
∑s∈Ωivt

Vivts

∑v′∈Ωi ∑s∈Ωiv′ t
Viv′ts

V.5 Housing Transactions with Mortgage Applicant Income

To investigate heterogeneity in the price indices by household income, I merge mortgage applicant
data from the Home Mortgage Disclosure Act (HMDA) from 2005-2017 with the Zillow ZTRAX
transaction data.45 Enacted in 1975, the Home Mortgage Disclosure Act requires mortgage lenders
to submit loan-level borrower characteristics, including mortgage lender, applicant gross income,
census tract, year, and loan amount (rounded to the nearest thousands). To merge the data to the
Zillow ZTRAX transaction data, I follow Bayer et al. (2007) and merge on the mortgage lender,
loan amount, and census tract.

I find that out of my final sample of 17.0 million transactions from 2005-2017 for the 98 MSAs
with non-missing characteristics, and transaction prices, I obtain a matched mortgage record with
non-missing applicant income for 7.9 million observations (47% match rate). Table A1 presents
summary statistics for the merged ZTRAX and HMDA data.46 Table A2 presents summary statis-
tics on applicant income in my sample.

V.6 Household Income

IPUMS ACS is a representative sample of households with key demographic information that al-
lows me to adjust for composition differences when measuring average household income in each
MSA and year. I regress log household income on observable household-head characteristics and
MSA X year fixed effects. The MSA X year fixed effects are extracted and used as the average

45I do not merge 2018 and 2019 mortgage data since loan amounts were updated to be reported in $10,000 intervals
rather than rounded to the nearest thousand. See Federal Register (2019) for details.

46The average number of varieties per MSA falls by 40%. The correlation between the MSA population rank and
fraction of all transactions with non-missing transactions is 0.37 in the merged dataset, compared to 0.36 in the main
dataset. As a result, the HMDA sample does not over-sample larger MSAs relative to smaller MSAs. I find that the
average transaction price is 7% higher, driven by a higher price per square feet while the average size of houses are the
same between the main and merged datasets.
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household income in an MSA. I include the following set of household-head characteristics: ed-
ucation categories, potential experience, industry, occupation, marital status, veteran status, race,
immigrant status, and English proficiency (all characteristics interacted with gender). As high-
lighted by Albouy (2011), it is important to account for federal and state taxes when measuring
real consumption across US metropolitan areas. Since the ACS reports pre-tax income, I use the
NBER TAXSIM program to compute post-tax income. See Appendix F for further details.

Following Diamond and Moretti (2021), IPUMS ACS allows me to map skill types defined
by education categories to income categories in each MSA and year. Using the previously merged
HMDA mortgage data with the ZTRAX transaction data, I construct income-specific price indices.
These income-specific housing price indices are then used to compute skill-specific price indices
based on the mapping from skill type to income categories.

VI Estimation Results

This section presents estimates of two key parameters in the housing price indices: the nest-level
demand elasticities and nesting structure. I implement the methodology developed in Section
IV on the ZTRAX transaction data. I estimate both the nest structure and demand parameters
for K = 2, ..., 15 and select the optimal number of nests to minimize a BIC criterion described in
Bonhomme and Manresa, based off Bai and Ng (2002). I find that the optimal number of nests is
six. As a robustness check, I compare the nest-level analysis with the results from a single nest.

To validate the estimated nest structure, I show that there are systematic differences in the
characteristics of housing varieties across nests. After establishing key differences across nests, I
then present the estimated elasticities of substitution across nests. Since the elasticities of substitu-
tion vary across nests, this heterogeneity will subsequently impact the measured effect of variety
across space.

VI.1 Multiple Nests

To validate the estimated nesting structure, I show that the housing characteristics systematically
vary across nests. The joint estimation relies on variation in prices and quantities across markets.
Because characteristics are used to define varieties but are not directly used in the joint estimation,
characteristic differences that emerge across different nests are not mechanical. Rather, the char-
acteristic differences that emerge show how households systematically substitute across housing
varieties.

I find systematic patterns of characteristic differences across nests. I first sort the nests based
on the average transaction price per square feet (see Table 4 for average prices in each nest). Prices
range from $160 in the cheapest nest to $204 in the most expensive nest. There is also significant
heterogeneity in average square feet. Nest 4 contains units that are on average 1,600 square feet,
compared to nest 1 that contains units that are 2,500 square feet. Table 3 presents characterizations
based on housing characteristics in the six nests. To support these characterizations, Figure 6
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presents the density of characteristics for nests 1, 2, and 4.47

I am able to sharply characterize nests 1, 2, and 4, which account for 90% of expenditure (see
Table 4 for nest expenditures). The first nest contains McMansions and covers 54% of expenditure.
These are suburban large homes with two floors, three bathrooms, and built in the 1990s and 2000s.
The second nest contains Suburban housing. Suburban housing accounts for 33% of expenditures,
are smaller units than McMansions, have fewer bathrooms, and are built in the post-war era. Nest
4 contains Urban homes that are close to the city center, are composed of a mixture of single family
detached and multi-unit structures, and are the smallest in terms of average square feet.48

The other three nests, 3, 5, and 6, are characterized as Other Urban homes. These nests account
for 10% of expenditures and are close to the city center, with 1 to 2 bathrooms and are composed
of a mixture of single family detached and multi-unit structures. Varieties in these three nests are
similar to each other, but distinct from nests 1, 2, and 4.

Table 3: Nest Characteristics

Nest Label Characteristics
1 McMansions Large SF Detached, post 1990s, 2 Floors, 3 Baths
2 Suburban Small SF Detached, post 1950s, 1 Floor, 2 Baths
3 Other Urban Medium Units, 1-2 Baths
4 Urban Smallest Units, 1 Baths, 2-3 Bedrooms
5 Other Urban Medium Units, 1-2 Baths
6 Other Urban Small Units, 1-2 Baths

Table 4: Nest Summary Statistics

Nest Label Frac Varieties Frac Expenditure Mean Price Mean Sq Ft
1 McMansions 22.0% 54.3% $160 2,522
2 Suburban 32.4% 32.6% $176 1,714
3 Other Urban 12.6% 4.3% $188 2,002
4 Urban 10.8% 2.9% $191 1,613
5 Other Urban 11.9% 3.2% $193 2,000
6 Other Urban 10.4% 2.7% $204 1,881

Notes: Square feet and prices are summarized at the transaction level within each nest.

Next, I assess the heterogeneity in nest-level elasticities of substitution. Table 5 presents the
estimated lower-level demand elasticities. The Estimated Coefficients column presents the coeffi-
cient on log square feet for each nest obtained after solving the joint least squares criterion in (14).
The demand elasticity, or elasticity of substitution, is the negative inverse of the estimated coeffi-
cient (presented in the second column). The estimated nest elasticities range from 6.5 in nest 5 to

47Figure A8 presents the same figure for all nests and all characteristics. Table A6 contains the full list of mean
characteristics by nest. Table A7 provides mean and median price and square feet, averaged across transactions within
each nest.

48Since I demean and detrend variety-level prices and square feet in the preliminary step, the estimation will not
mechanically group varieties based on the level of prices or square feet.
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Figure 6: Density of Characteristics Across Nests
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9.9 in nest 1.49 It is interesting that the McMansions nest has the highest elasticity of substitution
of 9.9, consistent with the fact that McMansions are typically mass-produced with a lack of quality
differentiation. To the extent that there are larger variety differences in nests 3 or 5 (σ̂k < 7) versus
nest 1 (σ̂k = 9.9), then the aggregate welfare impact of variety differences will be larger.

A nested CES relaxes substitution patterns between housing varieties and allows the elasticity
of substitution to vary by nest. As a robustness check, I compute the single nest demand elasticity.
Table A8 presents estimates of demand elasticities for a single nest. My preferred specification is
column (5) with MSA X year fixed effects, MSA X variety fixed effects, and MSA X variety time
trends. The single nest elasticity is estimated to be 8.3. Thus, we omit important heterogeneity in
the elasticities of substitution when using only a single nest.

VI.2 Top-Level Demand Elasticity

After estimating the nesting structure and lower-level nest elasticities, I estimate the upper-level
elasticity of substitution across nests. I use the estimation strategy detailed in Section IV.4. Col-
umn (1) presents the estimated top-level demand elasticity with the panel approach under the
assumption of a vertical supply curve. Column (2) presents the estimated top-level demand elas-

49The standard errors presented do not include the standard error from estimation of the group membership. Bon-
homme and Manresa state that “in a large-T perspective standard errors are unaffected by the fact that group member-
ship has been estimated.” The T-dimension in my analysis is the combination of MSAs and years: 98 MSAs X 15 years
= 1,470.
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Table 5: Nested Demand Estimation using ZTRAX Data (2005-2019)

Nest Label Estimated Coefficients Demand Elasticities σ̂k
1 McMansions -0.101∗∗∗ 9.93∗∗∗

(0.004) (0.39)

2 Suburban -0.131∗∗∗ 7.65∗∗∗

(0.005) (0.27)

3 Other Urban -0.154∗∗∗ 6.48∗∗∗

(0.006) (0.26)

4 Urban -0.121∗∗∗ 8.24∗∗∗

(0.005) (0.35)

5 Other Urban -0.145∗∗∗ 6.90∗∗∗

(0.006) (0.27)

6 Other Urban -0.130∗∗∗ 7.68∗∗∗

(0.006) (0.34)
N 3,900,948
R2 0.865

Within R2 0.033
FE iv,it,iv·t

Notes: Estimated coefficients are presented in the first column from a regression of log prices on log square feet
interacted with nest indicators. The estimated demand elasticities in the second column are the negative inverse of the
estimated coefficients and standard errors are computed using the delta method. I use six nests following the BIC
criterion from Bonhomme and Manresa, based off Bai and Ng (2002). Standard errors clustered at MSA X Year level in
parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

ticity with the IV approach based on Hottman et al. Since both estimated demand elasticities are
similar, I use the IV estimate of 4.5 as the baseline.

The fact that both demand elasticities are similar supports the validity of treating the nest-level
quantity as exogenous. I can formally test this using a Hansen J-test where I estimate a J-statistic
of 0.037 and a p-value of 0.84 when both the quantity index as well as the dispersion term are used
as instruments for nest-level prices.50

The estimated top-level demand elasticity is lower than all the nest-level demand elasticities,
even though this was not enforced in the estimation itself. As pointed out by McFadden (1978),
Goldberg (1995), and Hottman et al. (2016), this is a sufficient condition for the nesting structure
to be consistent with utility maximization.

50This is also suggestive of the identifying assumption in the lower-level of treating variety quantities as exogenous.
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Table 6: Top Nest Estimation using ZTRAX Data (2005-2019)

Panel IV
ln Nest Price Index ln Nest Expenditure Share

ln Nest Quantity Index -0.22∗∗∗

(0.02)

ln Nest Price Index -3.5∗∗∗

(0.4)
Demand Elasticity σ̂: 4.6∗∗∗ 4.5∗∗∗

(0.3) (0.4)
N 8,820 8,820
R2 0.969
Within R2 0.09
FE it,kt,ik it,kt,ik
KP F-Stat 137.2

Notes: Table presents the estimated top coefficients and the corresponding demand elasticities. Standard errors
clustered at MSA X year level in parentheses. Estimation of nest price and quantity indices follow Hottman et al.
(2016) and use a normalization on the geometric average of relative-variety shocks in each nest. IV in the second
column is a measure of the dispersion of shares within a nest. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

VII Spatial Price Indices

I compare housing prices across metropolitan areas by building upon the bilateral CES price index
literature. Motivated by the micro-founded model of housing demand and location choice, the
bilateral CES price index summarizes price, quality, and variety availability differences between
two comparison points. The literature has traditionally considered the two comparison points as
two points in time, but there exists an emerging literature that has considered different spatial
locations as comparison points.

The standard CES price index approach by Sato (1976) and Vartia (1976) is developed for two
comparison points with the same set of varieties and an assumption that the quality shocks are
constant. Feenstra (1994) extends Sato-Vartia to account for differences in the set of varieties be-
tween the two comparison points (denoted CES-Feenstra).

Redding and Weinstein (2020) show that the Sato-Vartia assumption that quality shocks are
constant between the comparison points is inconsistent with the use of observed expenditure
shares from both comparison points. This is due to the fact that the observed expenditure shares
reflect varying quality shocks. Redding and Weinstein show that when the geometric mean of the
quality shocks for the common varieties are equal over time (equivalently, across spatial units),
then there is a simple expression of the exact price index (denoted CES-RW).

Since the CES price indices are not transitive, the choice of the MSA as the comparison unit
matters. In the subsequent analyses, I consider two measures. First, I consider all bilateral com-
parisons using a GEKS approach, where each MSA serves as the comparison unit. The Gini-
Éltető-Köves-Szulc (GEKS) approach is widely used in cross-country and cross-time comparisons
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(Deaton and Dupriez 2011, Diewert 2013). The GEKS price index is defined as

P
H,GEKS
i =

(
N

∏
j=1

PH
j

PH
C

PH
i

PH
j

) 1
N

where C is the base MSA in the GEKS approach, which only affects the scale of the price indices.51

Second, I evaluate each MSA’s housing price index against the Chicago-Naperville-Elgin MSA’s
housing price index. I choose the Chicago MSA since it has the third largest population, and has
a high share of non-missing transactions relative to the New York and Los Angeles MSAs (the
two largest populations). I show in the subsequent sections that the results are robust to either
measure, with the first measure of all bilateral comparisons as my preferred specification.

VII.1 Exact Price Index Comparisons

In this section, I show how the exact nested CES price index is constructed. Under the assumption
that the geometric mean of quality shocks within each nest and the geometric mean of nest-level
quality shocks are equal between each MSA i and the comparison MSA C, the overall log CES-RW
index is defined as

ln PH
i,C = ln PCommon

i,C + ln P
Variety
i,C

where the common price index compares the price indices of nests and housing varieties that exist
in both locations
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and the adjustment measures nest-level availability differences and within-nest variety availabil-
ity differences. It is defined as

ln P
Variety
i,C =

1
σ− 1

ln
λNest

i

λNest
C

+
1

NK
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1
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where ΩK∗
i,C denotes the set of overlapping nests between MSA i and comparison MSA C, NK

i,C =

|ΩK∗
i,C|, or the number of overlapping nests between MSA i and MSA C.52 Analogously, Ω∗i,C,k

51Since ∏N
j=1

(
PH

j

PH
C

) 1
N

is the same across all i, in cross-sectional regressions this term will be absorbed by the constant,

leaving
(

∏N
j=1

PH
i

PH
j

) 1
N

.
52s∗ik is MSA i’s expenditure on nest k out of expenditure on overlapping nests between MSA i and MSA C and s∗Ck is

MSA C’s expenditures on nest k out of expenditure on overlapping nests between MSA i and MSA C (see Appendix I.1
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denotes the set of overlapping varieties that are present in both MSA i and comparison MSA C
within nest k, and Ni,C,k is the number of overlapping varieties between MSA i and MSA C in nest
k, or Ni,C,k = |Ω∗i,C,k|.53

There are two variety adjustments in the price index: one at the nest level, λik
λCk

, and one at

the top level, λNest
i

λNest
C

. To gain intuition for the variety adjustment, we can first focus on the variety
adjustment at the nest-level. λik is the MSA i expenditure share on housing varieties that exist in
both MSA i and MSA C in nest k while λCk is the MSA C expenditure share on housing varieties
that exist in both MSAs in nest k. This comparison asks within nest k, how much households in
each location prefer the common varieties over the unique varieties available in their location.

Consider the scenario where MSA C has a super-set of varieties in nest k compared to MSA
i. If MSA i is missing varieties that MSA C has a substantial expenditure share on within nest k,
then λik

λCk
= 1

λCk
will be large since λCk will be small, leading to a higher price index. The amount

the price index increases is moderated by 1
σk−1 . If there are substantial variety differences in nests

with a smaller σk (where housing varieties are more differentiated or where preference draws are
less correlated), then the welfare impacts of variety differences are larger.

For the general case where the set of varieties in MSA C are non-overlapping with the varieties
of MSA i, consider the scenario when the share of expenditure on the common varieties is higher
in MSA i than MSA C. By revealed preference, households in MSA i prefer the common varieties
over MSA i’s unique varieties more than how much households in MSA C prefer the common
varieties over MSA C’s unique varieties. As a result, the unique varieties in MSA C provide
increased benefits compared to MSA i’s unique varieties, leading to a lower price index from
housing choice in MSA C compared to MSA i.

VII.2 Housing Price Indices and Population

To quantify availability differences over space, I compare how housing costs based on a CES price
index and housing costs based on a hedonic price index vary with city size. In Table 7, I estimate
the elasticity of the hedonic price index with respect to MSA population and the elasticity of CES
price indices with respect to MSA population for 98 MSAs from 2005 to 2019

ln PH
it = β ln Popit + γt + εit

The top panel considers the baseline nested CES while the bottom panel provides a sensitivity
check with a single CES nest. The columns labeled All Bilateral Comparisons show the estimated
population elasticities across all bilateral MSA comparisons with the GEKS approach, while the
columns labeled vs Chicago show the estimated population elasticities with Chicago as the com-
parison MSA.

for the formulas of these shares).
53s∗ivk is MSA i’s expenditure on variety v out of expenditure on overlapping varieties in MSA i and comparison MSA

C in nest k, and s∗Cvk is MSA C’s expenditure on variety v out of expenditure on overlapping varieties in MSA i and
comparison MSA C in nest k (see Appendix I.1 for the formulas of these shares).
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Table 7: ZTRAX Price Indices vs Population (2005-2019)

Nested CES

All Bilateral Comparisons vs Chicago

Hedonic Variety Common CES-RW Variety Common CES-RW
ln Pop 0.185∗∗∗ -0.070∗∗∗ 0.161∗∗∗ 0.092∗∗∗ -0.057∗∗∗ 0.198∗∗∗ 0.142∗∗∗

(0.017) (0.003) (0.018) (0.017) (0.004) (0.019) (0.020)
N 1470 1470 1470 1470 1470 1470 1470
r2 0.159 0.358 0.0693 0.0249 0.163 0.106 0.0651

Single Nest CES

All Bilateral Comparisons vs Chicago

Hedonic Variety Common CES-RW Variety Common CES-RW
ln Pop 0.185∗∗∗ -0.052∗∗∗ 0.148∗∗∗ 0.096∗∗∗ -0.037∗∗∗ 0.163∗∗∗ 0.126∗∗∗

(0.017) (0.002) (0.016) (0.016) (0.003) (0.017) (0.018)
N 1470 1470 1470 1470 1470 1470 1470
r2 0.159 0.325 0.0660 0.0302 0.117 0.0948 0.0688

Notes: All dependent variables are in logs. Population estimates are obtained from the Census Bureau. Robust
standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

I find that the standard hedonic housing price index overestimates housing costs in larger
cities. A standard hedonic housing price index has an elasticity of 0.19 with respect to population
compared to the nested CES-RW index, which has a population elasticity of 0.09. This 50% re-
duction is significant. The standard hedonic approach results in predicted housing prices that are
2.2 higher in New York (population 19.3 million) than Merced, CA (population 266,000). Utility-
consistent price indices that account for variety differences imply housing prices that are only 1.5
times higher.

Omitting variety differences across space will then lead to an overestimate of housing costs
in larger cities.54 The variety adjustment accounts for the increased availability of housing vari-
eties in larger cities.55 As a result, the variety adjustment reduces the housing gradient by 38%.
The common price index contributes the remaining 12% in reduction of the population elastic-
ity. Differences that arise between the common price index and hedonic index reflect the effect of
accounting for substitution across housing varieties.

The negative relationship between population and the variety adjustment is driven by the fact
that expenditure shares on the common varieties (the set of varieties that exist in both locations)

54In Table A11, I repeat the analysis for the CES-Feenstra (that does not account for quality differences across space).
I find that the nested CES-Feenstra variety adjustment for the Chicago comparison has a population elasticity of -0.04
and the overall index having a population elasticity of 0.13.

55See Figure A9 for a plot of the variety adjustment against population. The variety adjustment quantifies not only
the positive welfare effect of a larger number of varieties available in larger cities, as documented in Figure 1, but
also captures differences in the unique varieties available in larger cities compared to the unique varieties available in
smaller cities. Consider the set of varieties available in smaller MSAs with a population rank above 50. I find that 11%
of those varieties are ever transacted in Chicago while 77% of those varieties are ever transacted in larger MSAs with
a population rank below 50. Larger MSAs have more varieties but there are unique varieties in both small and large
MSAs.
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are systematically higher in smaller MSAs than in larger MSAs.56 By revealed preference, house-
holds in smaller MSAs prefer the common varieties more than how much households in larger
MSAs prefer the common varieties. As a result, households in larger MSAs benefit more from
having access to their location-specific unique varieties compared to households in smaller MSAs.

I find that the increased availability in larger cities is robust to using Chicago as a comparison
unit and to the national household comparison from Handbury and Weinstein (2014). In the last
two columns of Table 7, I estimate that the nested CES variety adjustment has a negative elasticity
with respect to population of -0.057, slightly higher than the baseline estimate of -0.07. I further
show that the increased availability in larger cities is robust to using a comparison against a na-
tional household that has access to all varieties. I estimate a population elasticity of -0.061 for the
variety adjustment in the national household comparison in Table A10 (Handbury and Weinstein,
2014).

The nested CES increases the magnitude of the variety adjustment compared to a single nest
CES. The population elasticity of the variety adjustment decreases from -0.052 with a single nest to
-0.070 with the nested CES.57 This is due to the fact that there are larger variety differences for nests
with lower elasticities of substitution. In a regression of the nest demand elasticity σk on the log of
the average nest-level expenditure shares on common varieties, ln λik

λCk
, the estimated coefficient is

-0.16 (standard error of 0.02).58 This means that there are larger differences in expenditure shares
in nests with more inelastic demand, increasing the magnitude of variety adjustment relative to a
single nest CES.

The difference between the nested and single CES index is related to Ossa (2015). Ossa shows
that when there is heterogeneity in the elasticities of demand across nests, the equivalent aggregate
elasticity is a weighted harmonic mean of the nest-level demand elasticities. In the case of CES-
RW, the equivalent aggregate elasticity, σ

Agg
i , is defined as the solution to59

(
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) 1
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λCk

) 1
σk−1
) 1
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where λi is the expenditure share on common varieties in MSA i and λC is the expenditure share
on common varieties in the comparison MSA. The formula for the equivalent aggregate elasticity

56How important is the number of unique varieties in determining the variety adjustment? I find that a regression of
the nest variety adjustment on the number of unique varieties has a R2 of 0.50 for the Chicago comparison and 0.92 for
All Bilateral Comparisons. Appendix J.1 provides a further discussion comparing the variety adjustment to the number
of varieties.

57The behavior of the overall price with respect to MSA population is similar for the nested and single CES. The
increase in magnitude of the variety adjustment is offset by a lower common price index of the single nest CES in larger
cities. I also find that the increase in the welfare impact from a nesting structure is especially strong for the national
household comparison where the single nest variety adjustment has a population elasticity of -0.037 compared to -0.061
for the nested variety adjustment.

58See Table A12 for details. The regression includes MSA fixed effects.
59I omit nest-level differences at the top-level since empirically all of the variety differences are within nests.
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ln λik − ln λCk

ln λi − ln λC

1
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There are two forces that generate a larger welfare impact from the nesting structure. First, since
this is a harmonic mean of σk, smaller values of σk will be weighted more. Second, a negative
relationship between σk and the nest-level variety indices, ln λik

λCk
, means that the smaller σk are

weighted more, decreasing σ
Agg
i and increasing the welfare impacts of variety differences. Relative

to the single nest demand elasticity of 8.3, I find that the median equivalent aggregate elasticity
across all MSA x years is 5.7.60

VII.3 Robustness Checks

Alternative Nesting Structures

I consider two sensible alternative nesting structures but find that they produce inconsistent elas-
ticities of substitution with utility maximization. The first alternative is nests determined by the
number of bedrooms. I find that the bedroom nesting structure is inconsistent with utility maxi-
mization: the top-level elasticity of substitution across nests of 5.6 is greater than the lower-level
elasticity of substitution within the one bedroom nest of 5.1 (McFadden 1978).61

The second alternative is nests formed by clustering on housing characteristics.62 Using six
nests, I find strong clustering on the decade the structure was built and number of rooms in Fig-
ure A10. Compared to the density of characteristics in my estimated nesting structure in Figure
6, the differences in the nests are evidence that the proposed joint estimation is not driven by
clustering on housing characteristics. I find that the second alternative is inconsistent with utility
maximization: the top-level elasticity of substitution of 8.1 across nests is greater than the lower-
level elasticities of substitution across varieties in two of the six nests.

Income and Population

How do the estimated housing price indices and variety adjustment vary with both population
and average household income? There are two takeaways: 1) the lower variety adjustment in
larger cities is robust to the inclusion of income, 2) the hedonic price index and the common
price index of the CES-RW index do not vary systematically with population after the inclusion
of income. The first four columns of Table A16 present regressions of the housing price indices on
income, while the last four columns presents regressions on both income and population.

60Since the expenditure share on common varieties differs for each MSA and each year, there is a different aggregate
elasticity for each MSA and year. There are cases when the sign of ln λik − ln λCk is different than ln λi − ln λC. As
a result, the aggregate sigma is either negative or very large. As a result, the mean is computed over the equivalent
aggregate elasticities between the 10th and 90th percentile. See Table A13 for the trimmed distribution.

61Using the alternate bedroom nest structure, I re-estimate the population elasticities of housing price indices in Table
A15. I estimate a population elasticity of the variety adjustment of -0.067, similar to the baseline population elasticity
of -0.7 in Table 7.

62I use the k-means to cluster housing varieties based on the characteristics used to define a variety: number of
rooms, bedrooms, floors, bathrooms, structure type, decade built, and distance from the city center.
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Distance from City Center and City Size

To investigate whether the variety effect is mechanically driven by the size of larger cities and the
inclusion of distance categories in the variety definition, I estimate the housing price indices for
housing transactions within varying distances from the MSA city center (i.e., circles of different
radii around the city center). Importantly, I do not restrict to housing only located within the
geographic boundaries of the MSA, but consider all housing within a certain distance from the
MSA city center. Table A14 presents the comparison for 20, 30 and 50 mile bands around the city
center. Both tables show that the variety effect is significant and robust even within 20 miles. The
single nest variety adjustment is -0.036 within 20 miles, increasing to -0.047 for all transactions
within 50 miles.63

VII.4 Long-Run Changes in Housing Costs and Population

Faster growing MSAs from 2005 to 2019 experienced both significant increases in housing prices
as well as increased housing variety relative to slower growing MSAs. Increased housing variety
decreases the variety adjustment, partially offsetting the increase in housing prices. As a result,
not accounting for housing variety means that we would overestimate the relative cost of housing
in faster growing MSAs by 20%. These long-run changes are consistent with the cross-sectional
results, where variety adjustments offset 38% of higher housing prices in larger MSAs.

There are two ways of estimating relative price changes over time. In this analysis, I use the
constructed spatial price indices that measures the variety adjustment and common price index
for each MSA against all other comparison MSAs. An alternative is to construct over-time price
comparisons for each MSA. I focus on the spatial price indices to ensure comparability with the
results in the cross-section.64 Using the spatial price indices, I regress long-run changes in housing
prices on long-run changes in population from 2005 to t ∈ 2015, ..., 2019

∆ ln PH
it = β∆ ln Popit + γt + εit

Since I include year fixed effects, γt, β measures relative changes in housing prices between faster
growing MSAs and slower growing MSAs.

I find that faster growing MSAs experienced increased variety availability compared to slower
growing MSAs. Figure 7 shows changes in the variety adjustment and the common price index
over the change in population. To interpret the estimates, an MSA that had a 1% higher population
growth than average experienced a relative increase in the common component of housing prices
by 0.57% and a relative decrease in the variety adjustment by 0.12%. As a result, the relative
increase in housing costs is overestimated by 20% if we do not account for changes in available

63The overall CES-RW price index is substantially lower compared to the hedonic index, with population elasticities
below 0.1 compared to 0.17 for the hedonic index: this difference is driven by both the variety adjustment as well as a
less steep common price index against population.

64Constructing and measuring housing cost inflation is beyond the scope of the paper, but is an important avenue
for future research.
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housing varieties.65

Figure 7: Long-Run Changes in Prices and Population

(a) Change in Variety Adjustment
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(b) Change in Common Price Index
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Notes: Figure presents regression of changes in components of the log price index on changes in log population from
2005 to the end of the period (2015-2019). For presentation purposes, the figure collapses the panel data into the
cross-section by computing the average change in price index components on average change in population
(demeaned). Figure is based on winsorized price changes at the 2.5% level. The regression estimates are robust to not
winsorizing.

VIII Spatial Implications: Real Income and Amenities

Housing is a third of household expenditure so housing costs matter for measured real income
across space. Standard hedonic approaches overestimate the cost of housing in larger MSAs by
not accounting for the increased housing variety. As a result, standard hedonic approaches sys-
tematically underestimate real income in larger MSAs relative to smaller MSAs. These differences
matter: I find that accounting for housing variety differences leads to real income increasing in
population. In contrast, previous estimates in the literature by Albouy (2011, 2016) suggest that
real income decreases in MSA population.

A spatial equilibrium requires marginal households to be indifferent across space. Thus, spa-
tial models feature a compensating differential for real income differences: amenities. By not
accounting for housing variety, standard hedonic approaches overestimate amenities in larger
MSAs. Following Roback (1982), urban researchers have regressed amenities on observable MSA
characteristics to understand drivers of non-consumption utility. I find evidence that key charac-
teristics that covary positively with population, including commute time and worse air quality,
have their valuation overestimated using a standard hedonic approach.

65I find that using a hedonic index results in an estimate of β = 0.42. Hence, the overall nested CES-RW index is
similar to the hedonic for changes in population over time. However, this omits two important offsetting factors: an
increase in the common prices and a decrease in the variety adjustment.
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VIII.1 Real Income

Real income consistent with the location-choice model is defined in equation (8),

Real Incomei =
wi(

PT
i

)µi
(
PH

i

)1−µi

I combine housing price indices, housing expenditure share, and composition-adjusted average
household income data. I estimate MSA-specific housing expenditure shares based on rental data
from the IPUMS ACS data (average µi = 0.35).66

I assume that other consumption prices do not vary across cities. The literature has found that
local housing costs explain a significant fraction of local prices. As a result, I only consider spatial
variation in housing prices and set PT

i = 1. Diamond and Moretti estimate that local housing rents
explain 89% of the variation high-income local prices and 96% of low-income local prices. For
middle-income workers, the elasticity of local prices with respect to housing rents is 0.36, which is
the same elasticity that Albouy (2011) estimates. Thus, my estimated housing expenditure share
(average µi = 0.35) is similar to the extrapolation of housing expenditure shares to other local
prices in the literature.

In contrast to previous results, real income is increasing in MSA population after accounting
for housing variety. Figure 8 plots the population elasticity of nominal wages, real income implied
by a hedonic approach, and real income implied by the CES-RW price index. The elasticity of nom-
inal wages with respect to population is 0.05, consistent with previous estimates (see Rosenthal
and Strange (2004) for a review). After accounting for housing prices using the standard hedonic
approach, real income is decreasing in population (with an elasticity of -0.017). This elasticity is
consistent with previous estimates, including Albouy (2011, 2016).

After accounting for increased housing variety availability in larger cities, real income is in-
creasing in population with an elasticity of 0.017. Thus, households are systematically compen-
sated in larger cities with higher real incomes.

VIII.2 Amenities

Given population shares, wages, and the housing price indices, I can use the location-choice prob-
abilities in the first stage of the model, (9) to recover the amenities of each MSA. An important
parameter is ν that governs the idiosyncratic preference dispersion over locations. The relative
amenity of MSA i against a comparison MSA C is

ln Bit − ln BCt =
1
ν
(ln Lit − ln LCt)− (ln wit − ln wCt − µi(ln PH

it − ln PH
Ct)) (16)

66This average is slightly higher than the previous literature as I only consider the household income of the head of
household and spouse (if present). Monte, Redding, and Rossi-Hansberg (2018) use a housing expenditure share of 0.4
based off the Bureau of Economic Analysis. Poole, Ptacek, and Verbugge (2005) discuss how the BLS computes housing
costs in the CPI. The largest component of CPI are rents and owner-occupied equivalent rents, accounting for a 0.29
share in 2004 and 0.33 in 2021. Since housing expenditure shares differ across locations, I use a Törnqvist index where
the log difference in local prices between locations i and n is equal to µi+µn

2 (ln Pi − ln Pn).
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Figure 8: Population Elasticity of Nominal Wages and Real Income

Slopes: 
 Nominal Income = 0.05 (0.00)
 Real Income: Hedonic = -0.02 (0.01)
 Real Income: CES = 0.02 (0.01)
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Notes: Figure presents the regression of nominal income, real income implied by hedonic, and real income implied by
CES-RW on demeaned log population. 95% confidence intervals for the standard error of predicted outcome variables
are presented.

This nests a Rosen-Roback spatial equilibrium with perfect mobility and no idiosyncratic pref-
erences by letting ν → ∞. The Rosen-Roback spatial equilibrium will have amenities exactly
compensate for real income differences across MSAs.67 As the baseline scenario, I assume a Rosen-
Roback equilibrium.

Since standard hedonic approaches overestimate amenities in larger MSAs, any MSA charac-
teristics that covary positively with population will have their valuation overestimated. I follow
Albouy (2011) and consider six characteristics: worse air quality (median AQI), commute time,
violent and property crime, cooling days, heating days, and precipitation days.68 Using the recov-
ered amenities, I regress them on these six characteristics in Table 8:

ln Bit = β ln Xit + γt + εit

I estimate a counter-intuitive result that the valuation for commute time is positive under a
hedonic approach. This result is rationalized by the fact that larger cities have higher commute
times but also higher amenities under a hedonic approach. However, once I accounting for hous-
ing variety, the sign on commute time reverses. As a result, a 1% increase in commute time is in
equilibrium valued as -0.1% of real income. The other major change after accounting for housing

67With ν < ∞, population shares also inform us of amenity differences: for two MSAs with the same housing prices
and wages, a larger population share in one of the MSAs will be the result of higher amenities.

68Worse air quality is measured by the median Air Quality Index from the Environmental Protection Agency. Section
K.1 contains a list of data sources. Results are robust to also using
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Table 8: Valuation of Amenities

Amenities: Hedonic Amenities: CES-RW Difference
ln Median AQI -0.08∗∗ -0.17∗∗∗ -0.09∗∗∗

(0.03) (0.03) (0.01)

ln Commute Time 0.09∗ -0.10∗ -0.19∗∗∗

(0.04) (0.04) (0.01)

PCA of Violent and Property Crime 0.005 0.0009 -0.00
(0.009) (0.010) (0.003)

ln Cooling Days -0.07∗∗∗ -0.08∗∗∗ -0.01∗∗∗

(0.005) (0.006) (0.002)

ln Heating Days -0.001 0.003 0.004∗∗

(0.005) (0.005) (0.002)

ln Days with Precip > 0.1inch -0.13∗∗∗ -0.15∗∗∗ -0.02∗∗∗

(0.008) (0.010) (0.003)
N 1179 1179 1179
R2 0.363 0.396 0.602

Notes: Table presents regressions of recovered amenities based on a Rosen-Roback spatial equilibrium on six MSA
characteristics. Robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

variety is worse air quality (median AQI), where the coefficient doubles from -0.08 to -0.17. Thus,
previous approaches underestimate the cost of worse air pollution.69

IX Housing Prices: Heterogeneity by Income

In the last section of the paper, I ask how housing costs vary by household income. Given the
mortgage data, I am able to measure transaction-level household income. Consistent with priors,
I find that high-income households benefit almost three times more from the increased housing
variety in larger MSAs than low-income households. In Appendix K.4, I use the income-specific
price indices to measure updated real income by skill group that accounts of housing variety. In
contrast to Diamond and Moretti (2021), I find that real income is underestimated in larger MSAs
for households across all skill groups. The increase in the elasticity of real income with respect to
MSA population for each skill group is similar to the aggregate change of 0.03.

To maintain tractability, I separate transactions into quartiles of the income distribution each
year and estimate income quartile-specific price indices. By using income quartile-specific expen-

69Consistent with Albouy (2011), I find that crime does not covary with recovered amenities. This points potentially
to the highly local nature of crime. Heating days has a close to zero valuation, while cooling days has a negative
valuation. Finally, precipitation days have a significant negative amenity value. Assuming a finite preference elasticity
over MSAs will result in different levels of amenities and different valuations. However, the change in valuation (third
column), will be the same for all values of ν.
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diture shares, the price indices allow quality and taste shocks to differ for the same variety by
income-quartile. As a robustness check, I also allow elasticities of substitution to vary by income-
quartile and use income-specific variety prices. I find similar results as with my baseline approach.
Thus, differences in housing costs by income quartile are driven by variation in the types of hous-
ing varieties that households in different income quartiles purchase.

I find that households in the fourth quartile of income benefit almost three times more from
the availability of housing varieties in larger MSAs relative to households in the first quartile of
income. Figure 9 shows that the increased variety benefit in larger cities for high income house-
holds leads to a lower elasticity of housing costs with respect to population. In contrast, a hedonic
approach yields a similar elasticity of housing prices with respect to population for all income
quartiles. These results are consistent with high income households being able to afford a wider
variety of housing.70

Figure 9: Population Elasticity by Income Quartiles
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Notes: Figure presents the estimated population elasticity for four income quartiles. 95% CI bars presented.

In Appendix K.4, I find that previous approaches underestimate real income in larger MSAs for
households across all skill groups. To do so, I map skill groups to income quartiles and estimate
income-quartile specific housing costs and housing expenditure shares. I find that my estimates of
the population elasticity of real income implied by a hedonic index are consistent with estimates
from Diamond and Moretti (2021). Accounting for housing variety differences then causes the
population elasticity of real income to increase by 0.03 all three skill groups. As a result, high-skill
households have even higher real incomes than previously measured in larger MSAs. At the same

70Results are robust to using income-quartile specific prices for the hedonic approach. Lower housing costs for high-
skill households also has implications for how we think about changes in real income and utility from the increased
high skill sorting into large cities since the 1980s (Moretti 2013, Diamond 2016).
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time, low-skill households face a smaller decline in real income when moving from a smaller to a
larger MSA than previously estimated.

X Conclusion

This paper estimates housing costs across metropolitan areas that account for differences in the set
of available housing varieties. When households have idiosyncratic preferences over housing va-
rieties, increased variety availability allow households to find a better match to their ideal type. I
find that in the cross-section, the increased availability in larger MSAs substantially revises down-
wards housing costs in larger MSAs. Since housing is a third of household expenditure, housing
costs that account for variety differences have significant impacts on real income and residual
amenities recovered under a spatial equilibrium.

To generate flexible substitution patterns, this paper proposes a new method to jointly esti-
mate both the nesting structure and elasticities of substitution. I find that a nested CES generates
important heterogeneity and differences in the variety adjustment compared to the single nest.
The estimation approach I develop can be applied to other settings, especially ones without rich
data on product characteristics. In international trade, this is especially important since 1) trade
flows are aggregated to categories that reflect the objectives of policy makers (Grant, 2022) and
2) the Armington assumption that varieties differentiated by country of origin belong to a single
nest, which restricts how consumers substitute across import varieties.

Housing costs that account for variety differences have implications of a wide range of spa-
tial and housing research. These include how we think about changes in spatial real inequality
(Moretti 2013, Diamond 2016), the costs of zoning in restricting the variety of housing, and the
production function of housing. The standard approach in the housing production literature has
considered the production of single family homes and estimated constant returns to scale (see e.g.,
Epple, Gordon, and Sieg 2010, Combes, Duranton, and Gobillon 2021). If varieties are important,
then the production of non-single family units has important implications. Furthermore, system-
atic new housing construction over time is an important dimension of housing variety, consistent
with the link between durable housing and long-run population dynamics (Glaeser and Gyourko
2005).

An important avenue of future research is to measure variety changes over time. How did
variety availability change during the housing downturn in 2006-2011 and the subsequent boom?
Broda and Weinstein (2010) and Aghion et al. (2019) have pointed out the importance of chang-
ing varieties over time. In the aggregate and by region, an important avenue is to analyze how
housing variety adjustments and quality changes over time impact measured inflation.
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Appendix A Stylized Model of Differentiated Housing Varieties

I develop a stylized model of housing construction with differentiated housing varieties. I show
that the stylized model generates a higher number of varieties in higher population locations. To
ensure tractability, the model focuses on a long-run symmetric equilibrium.71

Following Ahlfeldt et al. (2015) and Epple et al. (2010), construction firms create residential
floor area by combining capital K and land M with a Cobb-Douglas production technology. The
total square feet constructed in location i for variety m is equal to qiv = Kα

iv M1−α
iv , where 0 < α < 1.

The price of capital K is assumed to be constant across space, while the price of land Ri is
location-specific. Given the constant-returns to scale Cobb-Douglas production technology, the
location-specific marginal cost of producing is equal to Qi = κKαR1−α

i , where κ is a scalar. Note
that the marginal cost does not differ across varieties within a location.

In contrast to the previous literature, I assume that construction firms operate in an imperfectly
competitive market and face a fixed cost Fiv of constructing a variety. These fixed costs entail the
design of blueprints, structural safety design, and training of construction crews that are specific
to each variety v.

For a firm that decides to construct a variety v, their profit maximization problem is

max
piv

pivqiv −Qiqiv − wiFiv

where piv is the price per square feet. I have assumed that the fixed costs are incurred in wages
rather than the numeraire.

I assume that households have symmetric CES preferences over housing varieties and spend a
constant µ share of their household income on housing. For simplicity, I assume that varieties are
symmetric and there is a single nest over all varieties. The demand for variety v is given by

qiv = p−σ
iv Pσ−1

i µwiLi

Construction firms set prices such that the price of variety v is a constant mark-up over marginal
costs

piv = pi =
σ

σ− 1
Qi (17)

With free entry and the assumption that fixed costs are the same for all varieties v, the zero-
profit condition results in

qiv = q̄i =
(σ− 1)wiFi

Qi

Due to symmetry, the scale of each firm (i.e., square feet produced of each variety) is the same
across all varieties. Higher land prices result in higher marginal costs, Qi, and higher housing
prices, leading to a lower total supply of each variety.

To determine the number of equilibrium varieties Ni, we can combine the CES demand with

71As a result, I abstract from the secondary-home market.
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the zero-profit condition (similar to Almagro and Dominguez-Iino 2022),

Ni =
µLi

σFi
(18)

This result uses the fact that the housing price index in a symmetric equilibrium can be expressed

as a function of the number of varieties and the variety price, Pi = N
1

1−σ

i pi.
In equilibrium, larger populations result in a larger number of housing varieties. Notice that

if we did not assume that fixed costs are incurred in wages, but instead in the numeraire, then
Ni =

µwi Li
σFi

, so that the number of varieties is increasing in the total housing expenditure rather
than only population size.

Any location-specific increases in fixed costs (for example location-specific zoning regulations
that restrict building of multi-unit structures), will also reduce the number of varieties in a loca-
tion.

A.1 Spatial Equilibrium

I now embed the construction sector in a spatial equilibrium. I consider a set of locations i = 1, ..., I.
In each location, there is a tradable sector that produces a single homogeneous good in perfect
competition. The tradable good is set as the numeraire, so the price of the tradable good is T = 1.
The tradable sector faces a common location-specific productivity Ai and uses labor as its only
input. As a result, wages are pinned down by local productivity, wi = Ai.72

In each location, there is a fixed quantity of land Mi. By cost-minimization, we know that
the total expenditures on land must equal (1 − α) share of variable costs in the production of
residential floor space

MiRi = (1− α)q̄iQiNi

Solving this yields an expression for local land costs

Ri = (1− α)µ
σ− 1

σ

wiLi

Mi
(19)

Local land prices are pinned down by expenditures on land divided by the stock of land. The
construction sector receives µ share of local expenditure, wiLi. Out of this share, σ−1

σ goes toward
variable costs, out of which (1− α) share goes to land.73

I assume that household utility in location i is given by

Ui =
Ai

P
µ
i T1−µ

Bi

72Note that Ai may include both endogenous and exogenous factors. For example, if there are agglomeration forces
in production, then Ai = LγL

i Ãi.
73I assume that capital and land-owners are absentee.
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where Bi are location-specific amenities. The utility can be expressed in terms of fundamentals as

Ui = κ1
A1−µ(1−α)

i BiL
γ
i

F
µ

σ−1
i M(α−1)µ

i

where κ1 is a scalar that does not differ across locations and γ = µ
σ−1 − (1− α)µ. A higher variety

fixed cost lowers the utility from a location, while more of the fixed land factor increases the utility
from a location.

γ reflects two forces: there is a positive agglomeration force from housing variety and a con-
gestion force through higher land prices. When the share of land costs is high in the production
of square feet of floor space and when housing varieties are more substitutable, then γ < 0 so that
the net effect of population is negative.74

A spatial equilibrium is then defined such that for all locations i ∈ 1, ..., I

κ1
A1−µ(1−α)

i BiL
γ
i

F
µ

σ−1
i M(α−1)µ

i

= Ū (20)

In each location, land prices, housing variety prices, the number of varieties, and the location
housing price index can be determined from (17), (18), and (19).

A.2 Uniqueness and Stability

The sum of the populations across locations is equal to the total population

∑
i

Li = L̄

Note that the spatial equilibrium condition can be re-written as

Li = (Ūκ∗i )
1
γ

where κ∗i =

(
κ1

A1−µ(1−α)
i Bi

F
µ

σ−1
i M(α−1)µ

i

)−1

. U can then be obtained as the solution to

∑
i
(Ūκ∗i )

1
γ = L̄

for arbitrary κ∗i > 0 and L̄ > 0. Returning to (20) results in the interior equilibrium

Li

L̄
=

(κ∗i )
1
γ

∑i′(κ
∗
i′)

1
γ

74Combes et al. (2021) estimate 1− α = 0.35. As long as σ > 2.54, then γ < 0.
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When γ < 0, the congestion forces outweigh the agglomeration force. As a result, higher produc-
tivity and higher amenity locations lead to both larger populations and higher land prices, which
then equalize real utility across locations.75

However, following Krugman (1991) and Allen and Arkolakis (2014), the equilibrium when
γ > 0 is not stable. When γ > 0, a small increase in population will increase the indirect utility of
a location, leading to further population inflows and an unstable equilibrium. With γ < 0, ∂Ui

∂Li
< 0

so that the interior equilibrium is stable.

Appendix B Joint Location and Housing Choice

I show that the results of the main text are robust to a model where households jointly choose
housing variety and location. Note that rather than the timing assumption of idiosyncratic draws,
the parallel assumption that drives this result is that the idiosyncratic preference draws for a va-
riety v in location i are not systematically correlated with preference draws for the same variety v
in a different location i′.

A household j obtains the following indirect utility from choosing a housing variety v in a
location i

uivj = ln Bi + µi

(
ln QH

ivj + ln ϕiv

)
+ (1− µi) ln QT

ivj + ε ivj (21)

where QH
ivj denotes the quantity of square feet of housing obtained by household j

ln Qivj ≡ ln(µiwij)− ln piv

and QT
ivj denotes the quantity of other consumption obtained by household j

ln Qivj ≡ ln
(
(1− µi)wij

)
− ln PT

i

so that the utility from choosing a location i is increasing in the location-specific amenity and wage,
decreasing in the housing price for variety v in location i, increasing in the quality of variety v, and
decreasing in other consumption prices PT

i .
ε ivj is distributed i.i.d across households from a three-layer nested logit

F (~ε) = exp

− ∑
i∈1,...,N

 ∑
k∈ΩK

i

(
∑

v∈Ωik

e−
εivj
ρik

) ρik
ρi


ρi
ρL


where 0 ≤ ρik ≤ ρi ≤ ρL.

This nested logit can be visualized as

75Notice that when γ < 0, the interior equilibrium will be the unique equilibrium since every location will be popu-
lated. In a location that has zero population, a household has an incentive to move there and consume the fixed land
supply.
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Figure A1: Nested Logit Demand System
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Following standard nested logit derivations, the probability of picking variety v in location i is
given as

Prj(iv) =
ũ

1
ρik(v)
ivj

∑v∈Ωik(v)
ũ

1
ρik(v)
ivj

(
ũK

ik(v)j

) ρik(v)
ρi

∑k∈ΩK
i

(
ũL

ij

) ρik(v)
ρi

(
ũL

ij

) ρi
ρL

∑i∈1,...,N

(
ũL

ij

) ρi
ρL

where

ũivj =

(
Biwij(

PT
i

)1−µi

)(
ϕiv

piv

)µi

ũK
ik(v)j = ∑

v∈Ωik(v)

ũ
1

ρik(v)
ivj

ũL
ij = ∑

k∈Ωk
i

(
ũK

ikj

) ρik(v)
ρi

The probability of picking location i is then given as

Prj(i) = ∑
k∈ΩK

i

∑
v∈Ωik

Prj(iv)

=

(
ũL

ij

) ρi
ρL

∑i∈1,...,N

(
ũL

ij

) ρi
ρL

=
1

∑i∈1,...,N

(
ũL

ij

) ρi
ρL

(
Biwij(

PT
i

)1−µi

) 1
ρL

 ∑
k∈ΩK

i

(
∑

v∈Ωik

(
ϕiv

piv

) µi
ρik

) ρik
ρi


ρi
ρL

Let
ρik =

µi

σk − 1
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ρi =
µi

σ− 1

ρL =
1
ν

Then

Prj(i) =

(
Biwij

(PT
i )

1−µi(PH
i )

µi

)ν

∑i∈1,...,N

(
Biwij

(PT
i )

1−µi(PH
i )

µi

)ν

This coincides with the choice probability generated with the timing assumption. Notice that
unlike the timing assumption, this model does not nest a Rosen-Roback equilibrium since ν has
satisfy νµi ≤ σ− 1 so that we cannot let ν→ ∞.

What is the expenditure on each variety in the housing market? The probability of choosing
variety v conditional on choosing location i is the same across all households

Prj(v; i) = Pr(v; i) =
Ũ

1−σk(v)
iv

∑v∈Ωik(v)
Ũ

1−σk(v)
iv

(
ŨK

ik(v)

) 1−σ
1−σk(v)

∑k∈ΩK
i

(
ŨK

ik(v)

) 1−σ
1−σk(v)

where
Ũiv =

(
piv

ϕiv

)
ŨK

ik(v) = ∑
v∈Ωik(v)

Ũ1−σk
iv

Since this probability is conditional on location, location-specific amenities and non-housing con-
sumption prices drop out. The probability also do not depend on household income since income
does not impact the choice of a variety v within location i (notice that ln wij is the same across
varieties v in location i in the indirect utility).

As a result, the expected expenditure on variety v in location i is given as

Eiv = ∑
i∗j =i

Prj(v; i)pivQivj = Pr(v; i) ∑
i∗j =i

µiwij

This gives the exact same formulation as the market level expenditure in the main text.

Appendix C Fréchet Micro-Foundation

I now consider a two-stage decision process with a Fréchet micro-foundation that yields the same
CES housing price index in the first stage. With a Fréchet micro-foundation, the exponential be-
comes unnecessary.
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Second Stage

In the second stage, household j has chosen location i and housing expenditures EH
ij . The house-

hold chooses a housing variety m and the quantity of square feet qim

v∗j , q∗ivj = arg max
v,qivj

uivj = arg max
v,qivj

qivj ϕivε ivj (22)

s.t. pivqivj ≤ EH
ij

where ϕiv represents the quality of housing variety v. uivj can be interpreted as a quality-adjusted
square feet of housing services. ε ivj is drawn from a max-stable multivariate Fréchet distribution
following Lind and Romando (2021). A max-stable multivariate Fréchet distribution is defined as
a vector of draws ε ivj if for any αv ≥ 0, the distribution of maxv=1,...,M αvε ivj is Fréchet with a shape
parameter θ > 1. Each housing variety’s marginal distribution is Fréchet with shape parameter θ

and scale parameter Tv.
Lind and Romando (2021) show that ε ivj is a max-stable multivariate Fréchet distribution if

and only if the joint CDF is given by

P
[
ε i1j ≤ z1, . . . , ε iMj ≤ zM

]
= exp

[
−Gi

(
T1z−θ

1 , . . . , TMz−θ
M

)]
where Gi is the correlation function that satisfies the standard GEV properties and a normalization
property:

G(0, . . . , 0, 1, 0, . . . , 0) = 1

The household will optimally choose q∗ivj =
EH

ij
piv

so that the household’s housing choice problem
can be rewritten as

arg max
v

EH
ij

piv
ϕivε ivj

Let T1 = . . . TM = 1. Notice that the CDF of the maximum of uiv(j) is also Fréchet

Pr
[
max

m
uivj ≤ u

]
= Pr

ε i1j ≤ u

(
EH

ij

pi1
ϕi1

)−1

, . . . , ε iM(j) ≤ u

(
EH

ij

piM
ϕiM

)−1


= exp

[
−Gi

((
ϕi1

pi1

)θ

, . . . ,
(

ϕiM

piM

)θ
)

u−θ
(

EH
ij

)θ
]

(23)

A specific Gi function that corresponds to the nested logit is

Gi(~z) = ∑
k∈ΩK

i

(
∑

v∈Ωik

z
θk
θ

iv

) θ
θk
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The expected value of the maximum utility will be equal to

E[max
v

uivj] = EH
ij Γ
(

1− 1
θ

) ∑
k∈ΩK

i

(
∑

v∈Ωik

(
ϕiv

piv

)θk
) θ

θk


1
θ

∝
EH

ij

PH
i

where Γ(z) =
∫ ∞

0 xz−1e−xdx. Let θ = σ− 1 and θk = σk − 1. Notice that the restriction of θ > 1
is equivalent to σ > 2. The probability of purchasing any variety v will then coincide with the
probability generated by the logit micro-foundation in the main paper.

First Stage

In the first stage, household j chooses a location i and decides how to allocate income between
tradable and housing expenditures

max
i,EH

ij ,ET
ij

Uij = max
i,EH

ij ,ET
ij

Bi

(
UT

i (ET
i )
)µ (

UH
i (EH

ij )
)1−µ

zij

s.t. EH
ij + ET

ij ≤ wij

where UT
i (ET

ij) is the quantity of tradable consumption as a function of tradable expenditure,
UH

i (EH
ij ) is the expected utility of housing services as a function of housing expenditure, Bi is

the amenity of location i, and zij are idiosyncratic preference draws from a Fréchet distribution
with shape parameter ν > 1 over locations.

For tradable consumption, there is a tradable price index PT
i in location i so that

UT
i (ET

i ) ≡
ET

i

PT
i

I assume that housing prices, quality, and the set of available varieties in each location are
known to the household but the idiosyncratic housing draws ε are not yet realized. Hi can be
interpreted as the expected quality-adjusted square feet of housing services since the utility in
the second stage depends on the quantity of square feet and the quality of the housing variety
(along with the idiosyncratic shock). Note that the order of expectation can be relaxed, as detailed
subsequently.

Specifically, UH
i (EH

ij ) is equal to the expected value of the optimal housing choice:

UH
i (EH

ij ) ≡ E[max
v

uivj] =
EH

ij

PH
i

Thus, the exponential transform is unnecessary in contrast to the logit formulation.
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Expectation Order in Second Stage of Fréchet Micro-Foundation

Alternatively, I can consider the optimization problem where the expectation is taken over the
entire indirect utility

max
i,EH

i ,EC
i

E [Ui(j)] = max
i,EH

i ,EC
i

Bi

(
Ti(ET

i )
)µ

E
[
max

m
uim(EH

i )1−µ
]

zi(j)

s.t. EH
i + EC

i ≤ wi(j)

where uim(EH
i ) is

uim(EH
i ) =

EH
i

pim
ϕimε im

corresponds to the indirect utility defined in (22). Thus, the CDF of the maximum housing utility
uim(EH

i )1−µ is

Pr
(

uim(EH
i )1−µ ≤ u, ∀v ∈ Ωi

)
= Pr

(
uim(EH

i ) ≤ u
1

1−µ

)
= exp

[
−Gi

((
ϕi1

pi1

)θ

, . . . ,
(

ϕiM

piM

)θ
)

u−
θ

1−µ EH
i (j)θ

]
where I used (23) to derive the second line. Thus, this is a Fréchet distribution with shape param-
eter θ

1−µ (notice that this property also is used in the derivation of the price index in a standard
Eaton-Kortum international trade model). The expected value of this random variable is then

E[max
m

uim(j)1−µ] = EH
i (j)Γ

(
1− 1− µ

θ

) ∑
k∈ΩK

i

(
∑

v∈Ωik

(
ϕim

pim

)θk
) θ

θk


1−µ

θ

This leads to the same optimization problem as before

max
i,EH

i ,EC
i

E [Ui(j)] = max
i,EH

i ,EC
i

Bi

(
EC

i
Ti

)µ(
EH

i
Pi

)1−µ

zi(j)

s.t. EH
i + EC

i ≤ wi(j)

Simplified CES Model

A simplified version of the model consists of a household j having a location, consumption, and
housing decision given by

max
i,Ci ,{hiv}

Bizi(j)Cµ
i H

1−µ
i

s.t. TiCi + PiHi ≤ wi(j)
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whereHi is a composite over housing services from all varieties available, defined by

Hi =

 ∑
k∈ΩK

i

(
∑

v∈Ωik

(ϕivhiv)
σk−1

σk

) σk
σk−1

σ−1
σ


σ

σ−1

where hiv is square feet of housing variety v consumed in location i. Notice that with prices of
each variety given by piv and the condition that ∑v∈Ωi

pivhiv = PiHi, then the aggregate demand
for a housing variety over all households is given by (10). Although this model is substantially
simpler than the main model, in reality households do not consume a composite housing good.
Rather, households choose to consume a certain variety, which the main model is able to capture.

Appendix D Market Equilibrium and Rational Expectations

Figure A2 summarizes the timing of the supply and demand decisions. At the beginning of the
period, households that currently own a house decide whether to sell their house, determining
the supply of each housing variety available in each location.

Figure A2: Model Timing

End o f Period

Location Choice

Start o f Period

Housing Supply Decision

Demand Model

Housing Variety Choice

D.1 Supply

At the beginning of the period, households form an expected price of the housing variety v in
MSA i at time t that is consistent with rational expectations of the market equilibrium. Given the
household’s information set at the beginning of the period t, denoted by It, the supply of square
feet of variety m in location i at time t is given by

ln qS
ivt(It, ω̃ivt; β) = βiE[ln p∗ivt|It] + E[ln ωivt|It] + ln ω̃ivt (24)

where the first term on the right hand side captures the endogenous quantity response to expected
prices: p∗ivt denotes the equilibrium variety price and βi is the MSA-specific elasticity of quantity
supplied with respect to expected prices. The second and third term on the right hand side capture
supply shocks, where E[ln ωivt|It] are expected shocks to the quantity supplied of floor space and
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ln ω̃ivt are unexpected shocks, so that

E[ln ω̃ivt|It] = 0

This reduced form supply equation nests a specific case where there is a fixed supply of qivt square
feet of floor space available for sale within the short run (i.e., where βi = 0).76

D.2 Demand

Total square feet demand for a housing variety v in an MSA i at time t is given by

qivt(pit,ϕit; σ) = ϕσk−1
ivt

p−σk
ivt

P
1−σk
ikt︸ ︷︷ ︸

Pm|k(m)

P1−σ
ikt

P1−σ
it︸ ︷︷ ︸

Pk(m)

EH
it (25)

Pikt =

(
∑

v∈Ωikt

(
pivt

ϕivt

)1−σk
) 1

1−σk

, Pit =

 ∑
k∈ΩK

it

P1−σ
ikt

 1
1−σ

D.3 Equilibrium

The market clearing prices in location i and time t for housing varieties are implicitly defined by
the prices such that the entire square feet of floor space of each housing variety is purchased by
households,

ln qS
ivt(It, ω̃ivt; β) = ln qivt(p∗it,ϕit; σ), ∀v ∈ Ωit

where qivt is given in (25).
The equilibrium prices are an implicit function of both the endogenous supply response and

exogenous supply shocks to floor space. Even though the supply of floor space of each variety
does not explicitly depend on quality shocks ϕit, it will depend on the homeowner’s information
set and expectations of the market equilibrium. As a result, the supply of housing will ultimately
depend on the expected quality shock.

76The supply decision can be extended in two key ways. First, households can care about the relative expected price
of their variety versus a location average, so that

ln qivt(It, ω̃ivt; β) = βi (E[ln p∗ivt|It]− E[ln P∗it |It]) + E[ln ωivt|It] + ln ω̃ivt

where E[ln P∗it |It] is the expected price index of all housing in location i. Second, suppose that households care about
the expected utility from the demand model (from choosing to move and buying a new house).

ln qivt(It, ω̃ivt; β) = βiE[ln p∗ivt|It] + λiE
[

max
`
U`t|It

]
+ E[ln ωivt|It] + ln ω̃ivt

where E [max` U`t|It] is the expected utility from moving and buying a new home and λi is the MSA-specific response.
Due to the set of fixed effects I include, both extensions are consistent with my estimation approach.
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Substituting in demand from (25) and supply from (24) yields

(σk− 1) ln ϕivt−σk ln pivt +(σk−σ) ln Pikt +(σ− 1) ln Pit + ln EH
it = βiE[ln pivt|It]+E[ln ωivt|It]+ ln ω̃ivt

Re-arranging yields

ln pivt =
1
σk

[
(σk − σ) ln Pikt + (σ− 1) ln Pit + ln EH

it + (σk − 1) ln ϕivt − βiE[ln pivt|It]− E[ln ωivt|It]− ln ω̃ivt

]
The higher the aggregate price indices, expenditure, quality appeal shock, the higher the price of

variety m in equilibrium. At the same time, higher supply reduces the equilibrium price.
Taking the expected value of both sides in terms of the household’s information set at the

beginning of the period t results in

E[ln pivt|It] = E
[

1
σk

(
(σk − σ) ln Pikt + (σ− 1) ln Pit + ln EH

it (σk − 1) + ln ϕivt

)
|It

]
− E[

βi

σk
ln pivt|It]− E

[
1
σk

ln ωivt|It

]
− E

[
1
σk

ln ω̃ivt|It

]
(26)

Households thus anticipate the effect of their quantity supplied (based on their information
set) on the equilibrium price at time t. Consistent with rational expectations, I assume E[ln ω̃ivt|It] =

0. As a result, I can re-arrange the expression to yield

E[ln p∗ivt|It] =
σk − σ

σk + βi
E [ln Pikt|It] +

σ− 1
σk + βi

E [ln Pit|It] +
1

σk + βi
E
[
ln EH

it |It

]
+

σk − 1
σk + βi

E [ln ϕivt|It]−
1

σk + βi
E [ln ωivt|It] (27)

The expected price given the information set at time t is increasing in the nest and overall price in-
dex, increasing in housing expenditures, increasing in the expected quality shock, and decreasing
in the expected supply shock.

D.4 Identification

To see why the strategy alleviates simultaneity bias, I can combine the supply equation (24) and
the rational expectation consistent price equation (27) to obtain the quantity supplied in terms of
fundamentals

ln qivt(It, ω̃ivt; β) =
(σk(v) − σ)βi

σk(v) + βi
E
[
ln Pik(m)t|It

]
+

(σ− 1)βi

σk(v) + βi
E [ln Pit|It] +

βi

σk(v) + βi
E
[
ln EH

it |It

]
+

(σk(v) − 1)βi

σk(v) + βi
E [ln ϕivt|It] +

σk(v)

σk(v) + βi
E[ln ωivt|It] + ln ω̃ivt (28)

In the main text I discuss how the αik(m)t, or the MSA X nest X year fixed effects absorb the first
three terms. Next, I assume that households currently living in a unit of variety m will generate
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an expectation for the quality based on the average nest quality, the variety’s average quality and
the variety’s average quality growth in their MSA. Specifically,

E[ln ϕivt|It] = ln ϕ̃E
ik(v)t + ln ϕ̃E

iv + ln ϕ̃E
ivt

where ln ϕ̃E
ik(v)t denotes the expected nest k quality, ln ϕ̃E

iv denotes the expected variety quality that
is constant over time, and ln ϕ̃E

ivt denotes the expected appeal growth over time for variety v in
MSA i.

I make an analogous assumption that the expectation of supply shocks is based on a nest
component, variety component, and variety average growth in their MSA

E[ln ωivt|It] = ln ω̃E
ik(v)t + ln ω̃E

iv + ln ω̃E
ivt

Plugging (28) into the estimating equation (12) and having the fixed effects absorb the relevant
components means that the identifying assumption can be rewritten as E [(ln ω̃ivt)(ln ϕ̃ivt)] = 0,
or that demand (i.e., quality) and supply shocks are uncorrelated (conditional on the fixed effects).
For the quantity term in (13), after the inclusion of the three sets of fixed effects, the remaining vari-
ation are the exogenous supply shocks, ln ω̃ivt. For the error term in (13), the structural residual
is

εivt ≡
σk(v) − 1

σk(v)
ln ϕivt

where ϕivt are the variety quality shocks.

D.5 Structural Fixed Effects

First, I exactly decompose the quality shocks, ϕivt and quantity of floor space shocks, ωivt into
housing variety X MSA terms (ϕ̃iv, ω̃iv), MSA x nest X year terms (ϕ̃ik(v)t, ω̃ik(v)t), terms that cap-
ture the linear time trend for each housing variety in each MSA (ϕ̃imtt, ω̃ivt), and residual terms
(ϕ̃ivt, ω̃ivt).

ln ϕivt ≡ ln ϕ̃iv + ln ϕ̃ik(v)t + ln ϕ̃ivt + ln ϕ̃ivt

ln ωivt ≡ ln ω̃iv + ln ω̃ik(v)t + ln ω̃ivt + ln ω̃ivt

Based on these assumptions, I can derive the fixed effects in terms of the structural demand
and supply terms by substituting (28) into (11)

αik(v)t ≡
σk(v) − 1

σk(v)
ln ϕ̃ik(v)t +

σk(v) − σ

σk(v)
ln Pik(v)t +

σ− 1
σk(v)

ln Pit +
1

σk(v)
ln EH

it

− 1
σk(v)

βi

σk(v) + βi
E
[
(σk(v) − σ) ln Pik(v)t + (σ− 1) ln Pit + ln EH

it |It

]
− 1

σk(v)

βi(σk(v) − 1)
σk(v) + βi

ln ϕ̃E
ik(v)t −

1
σk(v) + βi

ln ω̃E
ik(v)t
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αiv ≡
σk(v) − 1

σk(v)
ln ϕ̃iv −

1
σk(v)

ln ω̃iv −
1
σk

βi(σk(v) − 1)
σk(v) + βi

ln ϕ̃E
iv −

1
σk(v) + βi

ln ω̃E
iv

αivt ≡
σk(v) − 1

σk(v)
ln ϕ̃ivt− 1

σk(v)
ln ω̃ivt− 1

σk(v)

βi(σk(v) − 1)
σk(v) + βi

ln ϕ̃E
ivt− 1

σk(v) + βi
ln ω̃E

ivt

The expressions for the fixed effects make it clear how they absorb the supply response to house-
hold expected prices in (24) and hence address simultaneity bias. The error term in the regression
can also be written as

εivt =
σk(m) − 1

σk(v)
ln ϕ̃ivt

Then after the inclusion of the fixed effects, the structural estimation equation can be re-written as

ln pivt = −
1

σk(m)
ln ω̃ivt + αik(v)t + αim + αimt + εivt

Appendix E Estimation

Since there is missing data as not all varieties appear in all MSAs in all time periods, I adapt the
k-means algorithm for missing data by setting the difference to be zero whenever either the cluster
mean for a specific MSA and year is missing (i.e., if all varieties assigned to a nest have a missing
observation for the specific MSA and year), or if the variety has no transactions for the specific
MSA and year. Since this will tend to draw varieties to clusters with missing centroids, I develop
an alternative distance calculation where I set the distance between a data point and a cluster to
be the value of the data point when the data point is non-missing and the cluster is missing.77

k-means Algorithm

Given a set of observations xi ∈ Rd, i = 1, ..., N, the objective is to partition observations into K
sets, denoted by S = {S1, ..., SK} that solve

min
S

K

∑
k=1

∑
xi∈Sk

||xi − µk||2, µk =
1
|Sk| ∑

xi∈Sk

xi

Equivalently, if we let k(i) ∈ {1, ..., K} denote the nest assignment of observation i, the problem is
equivalent to

min
µk ,k(i)

N

∑
i=1
||xi − µk(i)||2

77I estimate using both approaches and tend to find better performance using the latter approach.
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Bonhomme and Manresa’s Algorithm 1

Consider the general fixed effects regression

yivt = βk(v)xivt + αki(v)t + εivt

1. Let
(

β(0), α(0)
)

be some starting value. Set s = 0

2. Find nearest nest for v ∈ Ω

k(v)(s+1) = argmin
k∈{1,...,K}

N,T

∑
i=1,t=1

∑
v∈Ωit

(
yivt − β

(s)
k xivt − α

(s)
ikt

)2

3. Given nest membership for each variety, compute:

(
β(s+1), α(s+1)

)
= argmin

(βk ,α)

N,T

∑
i=1,t=1

∑
v∈Ωit

(yivt − βk(v)(s+1)xivt − αik(v)(s+1)t)
2

4. Set s = s + 1 and go to Step 2 (until numerical convergence).

Proposed Algorithm

1. Let β(0) be some starting value. Set s = 0

2. Run k-means to convergence, initialized with k-means++ (fixing the data)

(k(v)(s+1), α(s+1)) = argmin
k,α

N,T

∑
i=1,t=1

∑
v∈Ωit

(
yivt − β

(s)
k(v)xivt − αik(v)t

)2

3. Given nest membership k(v)(s+1) for each variety, run FE regression to estimate
(

β(s+1), α̃(s+1)
)

4. Set s = s + 1 and go to Step 2 (until numerical convergence).

Monte Carlo Simulation

E.1 Details

The nest-level quality is drawn from a log-normal distribution, where ϕNest
v ∼ LN(0, 1). Cutoffs

are then drawn based on this distribution to separate the varieties into nests. There is a random
number of varieties per bottom nest (minimum 10). The persistent quantity for each variety is
drawn from qv ∼ LN(4, 4) and the persistent quality is drawn from ϕv ∼ LN(0, 0.1). Even though
the quality variance is much smaller than the quantity variance, the contribution to the variation
in prices is scaled by σk−1

σk
compared to quantity which is scaled by 1

σk
. To combine the persistent

quality shock and the nest quality shock, I set ϕCombined
v = (ϕNest

v )
1

σk(v)−1 ϕv. Quantity in each period
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is the persistent draw times the shock, or qvt = qvq̃vt. Quality in each period is ϕvt = ϕCombined
v ϕ̃vt

and expenditure in each period is Et = EẼt. I use q̃vt ∼ LN(0, 0.1), ϕ̃vt ∼ LN(0, 0.1), and Ẽt ∼
LN(0, 0.2).

For estimation, I focus on a single location over time and include variety fixed effects to absorb
the persistent quality and quantity shock.

Figure A3: Simulation Nesting Structure

Bottom Nest 1 Bottom Nest 2

Variety 1 ... Variety n

... Bottom Nest 12

σ ∈ (3, 5) Top Nest

σk ∈ (7, 15)

Figure A4: Percent Error in Estimated Top Sigma at Variety Level
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Appendix F Data Appendix

Figure A5: Number of Varieties Across MSAs in the American Community Survey
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Notes: Varieties are defined as full interaction of number of bedrooms, number of rooms, structure type, lot size category, and decade
built. Sample excludes vacant units, mobile homes/trailers, boat/RVs, if any of the housing characteristics are missing, or if the rent
or owner-reported valuation is missing.

F.1 ZTRAX Data Details

Since the characteristic information is reported at the structure level for multi-unit structures (since
these are from county assessor offices), I compute unit-level characteristics by dividing total char-
acteristics with the number of units. I take care to verify that the data for multi-unit structures are
reported consistently at the structure level.

I focus on Deed Transfers and exclude transfers in the following categories: partial ownership
transfer, exempt from a transfer tax, intrafamily transfer (flag based on language on document and
programmatic buyer/seller names).78 To identify the transaction date, I first find the document
date. If missing, I use the signature date or recording date.

For square feet, I follow the recommendation of Zillow: I first take the maximum of either
the total building area or the sum of all the building areas (excluding the total category). For
properties missing building area data, I then take the sum of the non-building areas.79 Since the
square feet reported for multi-unit structures are at the structure level, I divide the total square
feet by the number of units.80

78For deed transfers, I restrict attention to transactions where the document type belongs to one of the following
categories: deed, condominium deed, warranty deed, trustee’s deed (foreclosure sale transfer), special warranty deed,
grant deed, bargain & sale deed, other, co-op deed, non-categorized deed, re-recorded deed, correction deed, individual
deed, limited warranty deed, cash sale deed, contract of sale deed, and agreement deed. If more than 10% of deeds are
uncategorized, I drop those transfers. Finally, I only include vendor’s lien deeds for Texas.

79I exclude the ST categories as these would double count the square feet.
80I confirm that the square feet after this modification are reasonable.
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F.2 Household Income

I define household income as the sum of household wages and business income. I use the ACS
samples from 2005-2019. Results are robust to restricting sample to full time workers aged 25-55,
which include workers who had more than 27 weeks worked and at least 30 hours on average
in the past year. Implementation details to measure composition-adjusted household income fol-
low Albouy (2011) Appendix B.1. To measure post-tax household income, I follow Diamond and
Moretti (2021) and use NBER TAXSIM. I input head of household marital status, age, income,
number of dependents, state, year, and spousal age and income (if relevant). I subtract federal,
state, and FICA taxes from pre-tax income (defined as sum of wage income and self-employment
income) to obtain post-tax income.

Table A1: Summary Statistics: ZTRAX and HMDA Data

# Varieties # Transactions Sales Price Sq Ft Price per Sq Ft
MSA-Year Variety-MSA-Year

Mean 1,740 3.6 $325,898 2,165 $182.8
10th pctile 352 1.0 115,000 1,046 %65.6
25th pctile 685 1.0 $165,000 1,363 $90.8
50th pctile 1,264 1.0 $253,300 1,876 $130.2
75th pctile 2,226 3.0 $390,000 2,619 $195.8
90th pctile 3,937 7.0 $596,200 3,546 $309.7

Notes: A variety is defined as the full interaction of the decade the housing structure was originally built (or
underwent substantial renovation), number of rooms, number of bedrooms, number of bathrooms, number of floors,
structure type, lot size quintile, and distance categories from the MSA central business district (CBD). Summary
statistics on sales price, square feet, and price per square feet are computed over all transactions with non-missing
applicant income.

Table A2: Summary Statistics for Applicant Gross Income (HMDA)

Mean 109,835

p1 22,000
p5 31,000
p10 38,000
p25 54,000
p50 82,000
p75 126,000
p90 194,000
p95 260,000
p99 524,000
N 7,919,236

Notes: Summary statistics on applicant income are computed over all transactions with non-missing characteristics,
sales price, and applicant income.
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Table A3: Fraction of Housing Units with Characteristics

Distance (miles) Rooms Structure Type
0-5 14.4% 1 0.7% Single detached 90.2%

5-10 25.6% 2 7.0% Single attached 6.2%
10-20 33.3% 3 24.0% Apartments
20-30 16.1% 4 15.9% 2 2.7%
30-100 10.6% 5 11.6% 3-4 0.8%

6 13.1% 5-9 0.1%
7 9.0% 10-19 0.0%

8+ 18.6% 20-49 0.0%
50+ 0.0%

Decade Built Bathrooms Bedrooms
Pre 1900s 1.4% 0 0.2% 0 0.3%

1900 - 1910 2.1% 1 18.6% 1 1.4%
1910 - 1920 1.7% 2 39.2% 2 14.3%
1920 - 1930 3.8% 3 31.4% 3 49.9%
1930 - 1940 1.9% 4 8.0% 4 27.1%
1940 - 1950 3.7% 5+ 2.7% 5+ 6.9%
1950 - 1960 8.9%
1960 - 1970 8.1% Floors Lot Size

1970 - 1980 9.2% 1 50.2% Quantile 1 21.4%
1980 - 1990 11.5% 2 46.5% Quantile 2 19.6%
1990 - 2000 14.2% 3 2.7% Quantile 3 20.7%
2000 - 2010 22.9% 4 0.1% Quantile 4 21.7%
2010 - 2020 10.4% 5+ 0.1% Quantile 5 16.5%

Figure A6: Comparison to Case-Shiller with ZTRAX data
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Figure A7: Characteristic Differences Between 10 Smallest and 10 Largest Cities
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Appendix G MSA List

Table A4: Final Sample of MSAs with Average Number of Transactions (2005-2019)

Pop Rank MSA CBSA Unique Average Frac Average # Average #
Code Varieties Non-miss Non-miss

1 New York-Newark-Jersey City, NY-NJ-PA 35620 169,372 9% 132,403 12,132
2 Los Angeles-Long Beach-Anaheim, CA 31080 118,320 17% 96,255 16,455
3 Chicago-Naperville-Elgin, IL-IN-WI 16980 140,873 49% 84,909 41,545
4 Dallas-Fort Worth-Arlington, TX 19100 29,114 64% 9,672 6,347
5 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 37980 164,071 68% 70,481 47,579
6 Houston-The Woodlands-Sugar Land, TX 26420 31,524 78% 7,862 6,278
7 Washington-Arlington-Alexandria, DC-VA-MD-WV 47900 159,899 57% 77,363 44,032
8 Miami-Fort Lauderdale-Pompano Beach, FL 33100 85,255 71% 65,809 46,592
9 Atlanta-Sandy Springs-Alpharetta, GA 12060 174,814 59% 97,018 57,177

10 Boston-Cambridge-Newton, MA-NH 14460 208,276 93% 38,127 35,483
11 San Francisco-Oakland-Berkeley, CA 41860 153,382 86% 45,752 39,598
12 Detroit-Warren-Dearborn, MI 19820 166,061 42% 44,487 18,720
13 Riverside-San Bernardino-Ontario, CA 40140 128,000 97% 80,462 78,169
15 Seattle-Tacoma-Bellevue, WA 42660 112,548 95% 51,678 49,018
16 Minneapolis-St. Paul-Bloomington, MN-WI 33460 161,911 54% 45,912 24,428
18 St. Louis, MO-IL 41180 105,457 61% 28,631 17,640
19 Tampa-St. Petersburg-Clearwater, FL 45300 49,717 38% 47,519 18,405
21 Denver-Aurora-Lakewood, CO 19740 116,758 95% 46,862 44,718
22 Pittsburgh, PA 38300 99,547 75% 24,293 18,219
23 Charlotte-Concord-Gastonia, NC-SC 16740 67,110 73% 44,164 32,189
24 Portland-Vancouver-Hillsboro, OR-WA 38900 86,172 53% 35,289 18,717
25 Sacramento-Roseville-Folsom, CA 40900 100,584 79% 41,132 32,824
27 Cincinnati, OH-KY-IN 17140 94,384 77% 21,848 16,664
28 Orlando-Kissimmee-Sanford, FL 36740 49,885 84% 41,623 34,841
29 Cleveland-Elyria, OH 17460 69,508 93% 17,190 15,900
31 Las Vegas-Henderson-Paradise, NV 29820 34,077 96% 53,899 51,795
32 Columbus, OH 18140 74,954 93% 17,383 16,140
34 San Jose-Sunnyvale-Santa Clara, CA 41940 50,498 92% 15,200 13,925
36 Virginia Beach-Norfolk-Newport News, VA-NC 47260 92,375 58% 23,876 13,878
37 Nashville-Davidson–Murfreesboro–Franklin, TN 34980 60,018 30% 34,716 10,434
38 Providence-Warwick, RI-MA 39300 108,930 95% 16,124 15,396
39 Milwaukee-Waukesha, WI 33340 41,080 46% 16,696 7,817
40 Jacksonville, FL 27260 48,776 87% 25,214 21,918
41 Memphis, TN-MS-AR 32820 43,765 85% 15,389 13,168
42 Oklahoma City, OK 36420 57,810 91% 18,350 16,714
43 Hartford-East Hartford-Middletown, CT 25540 71,796 94% 11,439 10,787
44 Louisville/Jefferson County, KY-IN 31140 44,354 54% 12,704 6,775
46 Richmond, VA 40060 70,189 71% 17,876 12,721
47 Buffalo-Cheektowaga, NY 15380 59,985 96% 11,517 11,101
50 Rochester, NY 40380 68,355 98% 13,921 13,668
51 Birmingham-Hoover, AL 13820 47,944 47% 11,799 5,594
56 Fresno, CA 23420 28,138 95% 12,568 11,987
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Pop Rank MSA CBSA Unique Average Frac Average # Average #
Code Varieties Non-miss Non-miss

57 Worcester, MA-CT 49340 77,562 94% 10,042 9,398
58 Bridgeport-Stamford-Norwalk, CT 14860 55,366 94% 7,897 7,421
60 Albany-Schenectady-Troy, NY 10580 59,042 95% 10,008 9,545
61 Omaha-Council Bluffs, NE-IA 36540 41,171 84% 8,875 7,866
62 New Haven-Milford, CT 35300 58,427 94% 7,603 7,165
63 Bakersfield, CA 12540 34,442 99% 14,582 14,406
66 Oxnard-Thousand Oaks-Ventura, CA 37100 32,068 96% 8,409 8,110
67 Allentown-Bethlehem-Easton, PA-NJ 10900 56,016 82% 10,229 8,317
68 Knoxville, TN 28940 41,451 51% 12,869 6,613
72 Columbia, SC 17900 26,392 53% 10,689 5,534
73 Greensboro-High Point, NC 24660 24,658 60% 9,110 5,465
74 Akron, OH 10420 35,928 99% 5,634 5,571
75 North Port-Sarasota-Bradenton, FL 35840 43,603 95% 14,824 14,109
77 Springfield, MA 44140 58,381 95% 6,662 6,359
78 Stockton, CA 44700 29,650 99% 13,033 12,962
80 Charleston-North Charleston, SC 16700 33,851 57% 13,184 7,431
81 Syracuse, NY 45060 36,930 97% 7,350 7,109
82 Toledo, OH 45780 34,075 94% 4,408 4,144
83 Colorado Springs, CO 17820 31,795 98% 14,533 14,284
84 Winston-Salem, NC 49180 25,627 83% 8,125 6,717
86 Cape Coral-Fort Myers, FL 15980 17,319 99% 18,299 18,076
88 Des Moines-West Des Moines, IA 19780 58,588 84% 10,415 8,727
89 Madison, WI 31540 27,201 51% 6,848 3,500
90 Lakeland-Winter Haven, FL 29460 22,788 84% 13,150 11,008
92 Deltona-Daytona Beach-Ormond Beach, FL 19660 21,276 65% 11,657 7,618
95 Augusta-Richmond County, GA-SC 12260 32,108 65% 8,504 5,526
98 Harrisburg-Carlisle, PA 25420 46,927 79% 7,059 5,549
99 Palm Bay-Melbourne-Titusville, FL 37340 16,077 93% 8,609 8,026

103 Lancaster, PA 29540 44,264 98% 6,542 6,380
104 Spokane-Spokane Valley, WA 44060 59,217 83% 9,263 7,716
105 Modesto, CA 33700 23,726 63% 9,743 6,130
107 Santa Rosa-Petaluma, CA 42220 39,395 98% 5,827 5,724
108 Fayetteville, NC 22180 15,930 77% 7,547 5,860
109 Lexington-Fayette, KY 30460 31,935 64% 7,501 5,088
112 Visalia, CA 47300 27,848 88% 5,819 5,115
115 York-Hanover, PA 49620 36,346 99% 6,019 5,943
118 Reno, NV 39900 23,519 88% 10,358 9,133
119 Asheville, NC 11700 27,993 72% 6,190 4,474
120 Port St. Lucie, FL 38940 28,598 97% 10,130 9,818
124 Salinas, CA 41500 23,634 96% 4,185 4,046
125 Vallejo, CA 46700 23,882 97% 7,628 7,393
126 Reading, PA 39740 30,296 98% 4,713 4,613
131 Manchester-Nashua, NH 31700 29,216 91% 4,417 4,029
139 Myrtle Beach-Conway-North Myrtle Beach, SC-NC 34820 27,581 81% 8,793 7,077
146 Eugene-Springfield, OR 21660 18,367 96% 4,485 4,290
147 Rockford, IL 40420 27,095 84% 4,054 3,393
148 Savannah, GA 42340 19,285 80% 5,945 4,787
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Pop Rank MSA CBSA Unique Average Frac Average # Average #
Code Varieties Non-miss Non-miss

150 Ocala, FL 36100 7,933 99% 5,227 5,183
159 Lincoln, NE 30700 17,925 79% 4,080 3,258
160 Fort Collins, CO 22660 40,018 96% 6,551 6,267
165 Spartanburg, SC 43900 12,428 70% 4,042 2,821
176 Merced, CA 32900 18,136 98% 4,505 4,426
178 Kennewick-Richland, WA 28420 19,296 65% 4,582 2,959
179 Greeley, CO 24540 33,416 97% 5,696 5,483
182 Olympia-Lacey-Tumwater, WA 36500 14,662 92% 4,931 4,544
191 Crestview-Fort Walton Beach-Destin, FL 18880 18,992 95% 5,613 5,334

Appendix H Estimation Results

H.1 Optimal Number of Nests

I follow Bonhomme and Manresa (2015) and choose the number of nests K so that it minimizes a
BIC criterion

min
K∈1,...,Kmax

BIC(K) =
1

NTM

N

∑
i=1

T

∑
t=1

∑
v∈Ω

(
ln pivt +

1
σk(v)

ln qivt − αik(v)t

)2

︸ ︷︷ ︸
εivt

+Khvnt

where M is the number of varieties, or M = |Ω| and hvnt is a penalty term

Khvnt = σ̂2 KNT + M + P
NTM

ln(NTM)

where P is the number of other parameters: in the case with linear time trends for each variety
in each MSA and variety X MSA fixed effects, P = 2MN. Notice that the M in the numerator
KNT+ M+ P is added to account for the fact that I am also estimating the nest assignment for each
variety, while KNT accounts for the number of nest X MSA x year fixed effects I am estimating.

To estimate σ̂2, I run the algorithm with the maximum number of nests (Kmax)

σ̂2 =
1

NTM− KmaxT −M− P

N

∑
i=1

T

∑
t=1

∑
v∈Ω

(
ln pivt +

1
σk(v)

ln qivt − αik(v)t

)2

In practice, I calculate σ̂2 as the RSS divided by the remaining degrees of freedom (observations
minus number of estimated parameters) with a maximum number of nests, Kmax = 15.

In general since there is missing data, for the first term in the BIC (column (1) in Table A5), I
use the RSS divided by the number of observations. For the penalty term (shown in column (2)),
for the numerator KNT + M + P, I use the number of estimated parameters. For the NTM term,
I use the number of observations. The resulting BIC sum is displayed in column (3) of Table A5,
which shows that the BIC is minimized at six nests.
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To check sensitivity, I compute the first term in the BIC as the RSS divided by NMT and for
the penalty term, I use the potential number of estimated parameters plus the number of varieties
KNT + M + 2MN (see columns (4) and (5)). This sensitivity is going to be punitive because of the
missing data relative to the baseline. I find that in this sensitivity check, the optimal number of
nests is 3.

Table A5: BIC: Optimal Number of Nests

(1) (2) (3) (4) (5) (6)
Nests RSS/nobs Khnt BIC = (1) + (2) RSS/NMT Khnt ALT BIC ALT = (4) + (5)
2 0.084365 0.659912 0.744277 0.001984 0.306877 0.308862
3 0.083115 0.660604 0.743719 0.001955 0.306897 0.308852
4 0.082131 0.661297 0.743428 0.001932 0.306918 0.30885
5 0.081358 0.661989 0.743347 0.001914 0.306938 0.308852
6 0.080662 0.662681 0.743344 0.001897 0.306958 0.308856
7 0.080102 0.663373 0.743475 0.001884 0.306979 0.308863
8 0.07959 0.664066 0.743656 0.001872 0.306999 0.308871
9 0.079069 0.664758 0.743826 0.00186 0.307019 0.308879
10 0.078657 0.665434 0.744091 0.00185 0.307039 0.30889
11 0.07829 0.66614 0.74443 0.001842 0.30706 0.308901
12 0.077883 0.666824 0.744706 0.001832 0.30708 0.308912
13 0.077567 0.667521 0.745088 0.001825 0.3071 0.308925
14 0.077245 0.66821 0.745455 0.001817 0.307121 0.308938
15 0.076899 0.668889 0.745788 0.001809 0.307141 0.30895

H.2 Additional Nest Summary Statistics

Table A6: Mean of Characteristics by Nest

Nest Decade Built Bedrooms Rooms Struct Type Baths Floors Lot Size Distance
1 10.91 3.52 5.08 0.05 2.84 1.64 3.13 15.61
2 8.73 2.99 4.81 0.14 1.96 1.36 2.64 15.48
3 8.06 3.07 4.85 0.28 2.13 1.51 2.88 14.69
4 6.09 2.68 4.44 0.75 1.60 1.69 2.13 12.88
5 7.69 2.99 5.24 0.33 2.12 1.60 2.76 14.55
6 7.37 2.93 4.91 0.47 1.99 1.62 2.52 15.69

Notes: The mean characteristics are computed over all transactions within each nest. Lot Size is coded as quintiles so a
larger number means on average, varieties are in a larger quintile. Decade Built is coded so that larger numbers
represent more recent buildings (equal to 1 for pre 1890s and 13 for after 2010). Struct Type is coded so that the 1
corresponds to single family detached, 2 corresponds to single family attached, and 3-8 correspond to structures with
multiple units (larger numbers represent buildings with more units). Distance measures the average number of miles
from the city center.
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Table A7: Summary Statistics For Each Nest

Nest Number Frac Expend Frac Sq Ft Mean Sq Ft Median Sq Ft Mean Price Median Price
Varieties per Sq Ft per Sq Ft

1 24,779 54% 56% 2,522 160.3 2,251 119.6
2 36,568 33% 33% 1,714 175.6 1,495 118.4
3 14,162 4% 4% 2,002 187.6 1,641 119.2
4 12,187 3% 3% 1,613 190.9 1,354 119.5
5 13,417 3% 3% 2,000 193.3 1,626 122.1
6 11,700 3% 2% 1,881 204.4 1,560 127.5

Notes: Square feet and prices are summarized at the transaction level within each nest.

Figure A8: Density of Characteristics Across Nests: All Characteristics and Nests
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H.3 Single Nest Estimation

Table A8 presents estimates of demand elasticities for a single nest. In column (1), I follow regress
log square feet on log price. The estimated demand coefficient is highly inelastic and suggests
that the demand of housing varieties is complementary. Since market-clearing prices will reflect
the current-period quality shock, then the omitted variable bias will be positive. This leads to an
upward bias in the estimated coefficient.

Under my identifying assumptions, I regress prices on quantities with a rich set of fixed ef-
fects in columns (2)-(5). I use several different sets of fixed effects aimed at absorbing structural
demand and supply terms. iv denotes MSA X variety fixed effects, so that the estimating varia-
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tion are deviations in quantity supplied and prices over time. it denotes MSA x year fixed effects,
absorbing the overall price index and so the demand elasticity is estimated from variation within
each market. v · t denote linear time trends for each housing variety v and iv · t denote linear time
trends for each housing variety X MSA, absorbing correlated demand and supply trends over time
at the variety level. The single nest demand elasticities range from 7.8 to 9.2.

Table A8: Single Nest Demand Estimation using ZTRAX (2005-2019)

(1) (2) (3) (4) (5)
ln Sq Feet ln Price ln Price ln Price ln Price

ln Price -0.245∗∗∗

(0.006)

ln Sq Feet -0.109∗∗∗ -0.127∗∗∗ -0.129∗∗∗ -0.120∗∗∗

(0.004) (0.004) (0.004) (0.004)
Single Nest Elasticity σ̂ -0.25∗∗∗ 9.21∗∗∗ 7.86∗∗∗ 7.78∗∗∗ 8.30∗∗∗

(0.006) (0.33) (0.24) (0.24) (0.30)
N 3,900,949 3,900,949 3,900,949 3,900,949 3,900,949
R2 0.847 0.630 0.807 0.817 0.855
Within R2 0.0315 0.0394 0.0307 0.0315 0.0296
FE iv,it,v·t it,v·t iv,it iv,it,v·t iv,it,iv·t

Notes: Estimated coefficients are presented in the first panel and the estimated sigma for each nest is presented in the
second panel. The estimated sigmas are the negative inverse of the coefficients for columns (2)-(5) and standard errors
are computed using the delta method. Standard errors clustered at MSA X year level in parentheses. ∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001

Appendix I Spatial Price Indices

I.1 Comparison vs a Comparison MSA C

The overall price index for either CES-RW or CES-Feenstra can be written as

Pi

PC
=

(
λNest

i

λNest
CH

) 1
σ−1

︸ ︷︷ ︸
Variety Index

P∗i
P∗C

,︸︷︷︸
Common Nest: Sato-Vartia or

Redding-Weinstein

(29)

I.1.1 Definition of Shares

s∗ik is MSA i’s expenditure on nest k out of expenditure on overlapping nests between MSA i and
comparison MSA C, and s∗C,k is comparison MSA C’s expenditure on nest k out of expenditure on
overlapping nests between MSA i and comparison MSA C.

s∗ik =
∑v∈Ωik

Viv

∑k′∈ΩK∗
i,C

∑v∈Ωik′
Viv

s∗C,k =
∑v∈ΩCk

VCv

∑k′∈ΩK∗
i,C

∑v∈ΩCk′
VCv
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where ΩK∗
i,C denotes the set of overlapping sets between MSA i and Chicago, Ωik denotes the set of

varieties available in MSA i from nest k, and ΩC,k denotes the set of varieties available in compar-
ison MSA C from nest k.

s∗ivk is MSA i’s expenditure on variety v out of expenditure on overlapping varieties in MSA i
and comparison MSA C in nest k, and s∗C,vk is comparison MSA C’s expenditure on variety v out
of expenditure on overlapping varieties in MSA i and comparison MSA C in nest k, so that

s∗ivk =
Viv

∑m′∈Ω∗i,C,k
Viv′

s∗C,mk =
VCv

∑v′∈Ω∗i,C,k
VCv′

where Ω∗i,C,k denotes the set of overlapping varieties between MSA i and comparison MSA C
within nest k.

I.1.2 CES-Feenstra

The Feenstra nested CES price index (CES-Feenstra) assumes that the quality shocks are constant
across the comparison periods. The price index has a recursive structure, where the top level is
composed of two terms. The first is a nest-level variety adjustment term, which measures the
impact of nest differences between MSA i and comparison MSA C. The second term is a weighted
geometric mean across the set of common (i.e., overlapping) nest-level price indices, where the
weights are a function of the nest expenditure shares in both locations. The second term measures
the relative prices of nests that are available in both locations.

Following the recursive nature, there are two analogous terms within each nest: a variety-level
adjustment term that measures differences in housing varieties within each nest and a weighted
geometric mean of relative prices over the set of common varieties, where the weights are a func-
tion of the variety expenditure shares in both locations.

The Feenstra CES price index (CES Feenstra) is given by

Pi

PC
=

(
λNest

i

λNest
C

) 1
σ−1

∏
k∈ΩK∗

i,C

( λik

λCk

) 1
σk−1

∏
v∈Ω∗i,C,k

(
piv

pCv

)ω(s∗ivk ,s∗C,vk)
ω(s∗ik ,s∗C,k)

(30)

where the ω function defines weights that are a logarithmic average of the input shares. For
instance,

ω(s∗ivk, s∗C,vk) ≡
s∗ivk−s∗C,vk

ln s∗ivk−ln s∗Cvk

∑`∈Ω∗i,C,k

s∗i`k−s∗C`k
ln s∗i`k−ln s∗C`k

Focusing first on the variety correction, λik is MSA i’s expenditure share on housing varieties
that exist in both MSA i and comparison MSA C in nest k. Similarly, λCk is comparison MSA C’s
expenditure share on housing varieties that exist in both MSA i and comparison MSA C in nest k.

Notice that both the nest-level ( λik
λCk

) and top-level variety indices ( λNest
i

λNest
C

) are the same for the
CES-Feenstra and CES-RW price indices. However, the nest-level variety index will have a differ-
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ent impact on the overall price index since the weight for the nest-level variety index is 1
NK

i,C
in the

CES-RW price index compared to ω(s∗ik, s∗Ck) in the CES-Feenstra index.

I.1.3 Single Nest CES Price Index

In this subsection I provide the formulas for a single nest CES price index in a comparison of each
MSA against a comparison MSA C. The CES-Feenstra single nest index is given as

Pi

PC
=

(
λNest

i

λNest
C

) 1
σsingle−1

∏
v∈Ω∗i,C

(
piv

pCv

)ω(s∗iv,s∗Cv)

(31)

where Ω∗i,C denotes the set of overlapping varieties for MSA i and comparison MSA C, Ωi denotes
the set of available varieties in MSA i, and ΩC denotes the set of available varieties in comparison
MSA C.

The shares in (31) are defined as

λNest
i =

∑v∈Ω∗i,C
Viv

∑v∈Ωi
Viv

λNest
C =

∑v∈Ω∗i,C
VC,v

∑v∈ΩC
VC,v

s∗iv =
Viv

∑v′∈Ω∗i,C
Viv′

s∗C,v =
VC,v

∑v′∈Ω∗i,C
vC,v′

The CES-RW single nest index is given as

Pi

PC
=

(
λNest

i

λNest
C

) 1
σsingle−1

∏
v∈Ω∗i,C

(
piv

pCv

) 1
Ni,C

∏
v∈Ω∗i,C

(
s∗iv
s∗Cv

) 1
Ni,C

(32)

where Ni,C is the number of overlapping varieties for MSA i and comparison MSA C, or Ni,C =

|Ω∗i,C|.

I.2 Comparison to a Representative National Household

Following Handbury and Weinstein (2014), I consider a comparison for each MSA versus a repre-
sentative national urban household who has access to all varieties and all nests. The representative
urban household faces a price (a tilde above a variable denotes the national analogue and the sub-
script N denotes the national household)

p̃Nv =
∑i Viv

∑i qiv
≡∑

i

qiv

∑j qjv
piv (33)

where viv is the total expenditure in MSA i on variety v, piv is the price of variety v in MSA i,
and qiv is the total square feet of housing variety v in MSA i. To define expenditure shares for the
national urban household, it is helpful to define total expenditures on variety v, ṼNv = ∑i Viv, so
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that the national expenditure share on variety v is

s̃Nv =
ṼNv

∑v′ ṼNv′
≡ ∑i Viv

∑i,v′ Viv′

Under the assumption that the geometric mean of quality shocks within each nest and the
geometric mean of nest-level quality shocks are equal between each MSA and the representative
urban household, the overall CES-RW index is given by

Pi
PN

=

(
1

λN

) 1
σ−1

 ∏
k∈ΩK

i

s∗ik
s̃∗Nk

 1
(σ−1)NK

i

 ∏
k∈ΩK

i

( 1
λNk

) 1
σk−1

(
∏

v∈Ωik

s∗ivk
s̃∗Nvk

) 1
(σk−1)Nik

(
∏

v∈Ωik

piv
p̃Nv

) 1
Nik


1

NK
i

(34)

As in the Chicago comparison, there are two variety indices: one at the nest level, 1
λNk

and one
at the top level, 1

λN
.81 In contrast to the Chicago comparison, since the representative household

has access to all varieties, variety or nest differences between MSA i and the national household
are due to varieties and nests that are not present in MSA i. As a result, the set of common
varieties and nests are simply the set of varieties available in MSA i, so that the expenditure share
on common varieties and common nests in MSA i is always one.

Focusing on the nest-level variety index, λNk is the national expenditure share on housing
varieties that exist in MSA i in nest k, or

λNk =
∑v∈Ωik

ṼNv

∑v∈Ωk
ṼNv

where the set Ωik denotes the set of varieties within nest k available in MSA i and Ωk denotes the
set of all varieties within nest k. If MSA i is missing varieties that have a significant national ex-
penditure share within nest k, then λNk will be small, leading to a higher relative price index. The
amount the price index increases is moderated by 1

σk−1 . If there are substantial variety differences
in nests with a smaller σk (where goods are more differentiated or where preference draws are less
correlated), then the welfare impact of not having those varieties is larger.

Focusing on the top variety index, λN is the national expenditure share on nests available in
MSA i, or

λN =
∑k∈ΩK

i
∑v∈Ωk

ṼNv

∑k∈ΩK ∑v∈Ωk
ṼNv

where the set ΩK
i denotes the set of nests available in MSA i and Ωk denotes the set of all nests. If

an MSA is missing certain nests that are a significant part of national expenditure, then λN will be

81In the first line, NK
i is the number of available nests in MSA i, or NK

i = |ΩK
i |, s∗ik is the share of MSA i expenditure

on nest k, and s∗kN is the national expenditure share on nest k out of all nests that exist in MSA i. In the second line, Nik
is the number of varieties available in nest k in MSA i, or Nik = |Ωik|, λNk is the national expenditure share on housing
varieties that exist in MSA i in nest k, s∗ivk is the share of expenditure in MSA i on variety v within nest k, and s∗Nvk is
the national share of expenditure on variety v of varieties available in MSA i in nest k. The formula of these share are
provided in Appendix I.2.1.

82



small (note that the expenditure share will always be less than or equal to 1), driving the variety
index up.

I.2.1 Definition of Shares

The overall price index for either CES-RW or CES-Feenstra can be written as

Pi

PN
=

(
1

λN

) 1
σ−1

︸ ︷︷ ︸
Variety Index

P∗i
P∗N

,︸︷︷︸
Common Nest: Sato-Vartia or

Redding-Weinstein

(35)

s∗ivk is the share of expenditure in MSA i on variety v within nest k and s̃∗Nvk is the national share
of expenditure on variety v of varieties available in MSA i in nest k, so that

s∗ivk =
Viv

∑v′∈Ωik
Viv′

s̃∗Nvk =
ṼNv

∑v′∈Ωik
ṼNv′

s∗ik is the share of MSA i expenditure on nest k and s̃∗Nk is the share of national expenditure on
nest k out of all nests that exist in MSA i. These are given by

s∗ik =
∑v∈Ωik

Viv

∑k′∈ΩK
i

∑v∈Ωik′
Viv

s̃∗Nk =
∑v∈Ωk

ṼNv

∑k′∈ΩK
i

∑v∈Ωk′
ṼNv

I.2.2 CES-Feenstra

The overall CES-Feenstra price index is given by

Pi

PN
=

(
1

λN

) 1
σ−1

∏
k∈ΩK

i

((
1

λNk

) 1
σk−1

∏
v∈Ωik

(
piv

p̃Nv

)ω(s∗ivk ,s̃∗Nvk)
)ω(s∗ik ,s̃∗Nk)

(36)

λNk is the national expenditure share on housing varieties that exist in MSA i in nest k and λN is
the national expenditure share on nests that exist in MSA i.

I.2.3 Single Nest CES Price Index

In this subsection I provide the formulas for a single nest CES price index in a comparison of each
MSA against a national representative household. The CES-Feenstra single nest index is defined
as

Pi

PN
=

(
1

λN

) 1
σsingle−1

∏
v∈Ωi

(
piv

p̃Nv

)ω(s∗iv,s̃∗Nv)

(37)
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where Ωi denotes the set of available varieties in MSA i. The national expenditure share on vari-
eties available in MSA i is defined as

λN =
∑v∈Ωi

ṼNv

∑v∈Ω ṼNv
,

where Ω denotes the set of all available varieties.
The CES-RW single nest index is defined as

Pi

PCH
=

(
1

λN

) 1
σsingle−1

∏
v∈Ωi

(
piv

p̃Nv

) 1
Ni

∏
v∈Ωi

(
s∗iv
s̃∗Nv

) 1
Ni

(38)

where Ni is the number of varieties in MSA i , or Ni = |Ωi|.

Appendix J Reduced-Form Results

In Figure A9, I show the nested CES-RW Variety Adjustment against population for All Bilateral
Comparisons. The population and nest variety adjustment are averaged over time for each MSA.
In Table A9, I decompose the overall nested CES price index into its different components.

Figure A9: Nested CES Variety Index: Chicago Comparison

Akron

Albany

Allentown

Ashev

Atlanta

Augusta

Baker

Birmingham

Boston

Bridgeport
Buffalo

Cape Coral

Charleston

Charlotte

Chicago

Cincinnati, OH

Cleveland

Color

Colum

Colum

Crestview

Dallas

Deltona

Denver

Des Moines

Detroit

EugeneFayet

Fort

Fresn

Greel

Greensboro

Harrisburg

Hartford

Houston

Jacks

Kennewick
Knoxv

Lakeland

Lanca

Las Vegas

Lexington

Linco

Los AngelesLouisville/Jefferson County, KY

MadisManchester Memphis, TN
Merce

Miami

Milwaukee

Minneapolis

Modes

Myrtle Beach
Nashville

New Haven
New York

North Port

Ocala

Oklah

Olympia

Omaha
Orlando

Oxnard

Palm Bay

Philadelphia

Pitts

Portland

Port

Providence

Readi
Reno,

Richm

Riverside

Roche

Rockf

SacramentoSt. Louis, MO

Salin

San Francisco

San Jose

Santa Rosa

Savan

Seattle

Spart

Spokane
Sprin

Stock
Syrac

Tampa

Toled

Valle

Virginia Beach

Visal

Washington

Winston

Worcester, MA

York

-.
3

-.
2

-.
1

0
.1

.2
.3

ln
 V

ar
ie

ty
 A

dj
us

tm
en

t

-2 -1 0 1 2 3
ln Population

Slope: -0.07 (0.00)

Notes: Figure plots the regression of the variety adjustment on demeaned log population.

J.1 Comparison to Number of Varieties

How much of the variation in the variety index is explained by the number of varieties? To answer
this, I regress the single-nest variety adjustment for the Chicago comparison on the log number of
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Table A9: Decomposition of Nested CES-RW Price Index vs Population (2005-2019)

Common

Hedonic Variety Adj Price Share Nest Share Nested CES-RW
ln Pop 0.185∗∗∗ -0.0697∗∗∗ 0.159∗∗∗ 0.00958∗∗∗ -0.00701∗∗∗ 0.0918∗∗∗

(0.0166) (0.0029) (0.0166) (0.0018) (0.0005) (0.0174)
N 1470 1470 1470 1470 1470 1470
R2 0.159 0.358 0.0725 0.0165 0.102 0.0249

Notes: All dependent variables are in logs. Population estimates are obtained from the Census Bureau. Robust
standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A10: National Household Comparison: Price Indices vs Population (2005-2019)

Nested CES

All Bilateral Comparisons vs National Household

Hedonic Variety Adj Common CES-RW Variety Adj Common CES-RW
ln Pop 0.185∗∗∗ -0.0697∗∗∗ 0.161∗∗∗ 0.0918∗∗∗ -0.0610∗∗∗ 0.0487∗∗∗ -0.0123

(0.0166) (0.0029) (0.0176) (0.0174) (0.0024) (0.0123) (0.0123)
N 1470 1470 1470 1470 1470 1470 1470
R2 0.159 0.358 0.0693 0.0249 0.430 0.0150 0.00456

Single Nest CES

All Bilateral Comparisons vs National Household

Hedonic Variety Adj Common CES-RW Variety Adj Common CES-RW
ln Pop 0.185∗∗∗ -0.0523∗∗∗ 0.148∗∗∗ 0.0955∗∗∗ -0.0374∗∗∗ 0.0375∗∗ 0.0000606

(0.0166) (0.0022) (0.0164) (0.0162) (0.0021) (0.0121) (0.0125)
N 1470 1470 1470 1470 1470 1470 1470
r2 0.159 0.325 0.0660 0.0302 0.334 0.00999 0.00234

Notes: All dependent variables are in logs. Population estimates are obtained from the Census Bureau. Robust
standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

varieties and find that the R2 is 0.5, so that half of the cross-sectional variation can be explained
by the number of varieties.

Does the number of varieties predict the welfare impact of variety availability differences
across MSA size? I find evidence that the number of varieties over-predicts the welfare impact
of variety differences for large MSAs versus small MSAs.

I construct a predicted variety index by using the number of varieties multiplied by − 1
σ−1 . To

see why this index is relevant, suppose that Chicago has a super-set of varieties relative to each
comparison MSA and that the expenditure on each variety is the same. Then the variety index can
be re-written as

1
σ− 1

ln
λit

λCHt
=

1
σ− 1

ln
1

λCHt
= − 1

σ− 1
ln

Nit

NCHt

where Nit is the number of varieties in MSA i at time t. Note that λit is the expenditure on common

85



Table A11: CES-Feenstra Price Indices vs Population (2005-2019)

Nested CES-Feenstra

All Bilateral Comparisons vs Chicago vs National Household

Hedonic Variety Adj CES-Feenstra Variety Adj CES-Feenstra Variety Adj CES-Feenstra
ln Pop 0.185∗∗∗ -0.0518∗∗∗ 0.0993∗∗∗ -0.0398∗∗∗ 0.133∗∗∗ -0.0379∗∗∗ 0.00848

(0.0166) (0.00216) (0.0156) (0.00256) (0.0167) (0.00205) (0.0124)
N 1470 1470 1470 1470 1470 1470 1470
R2 0.159 0.347 0.0358 0.149 0.0746 0.345 0.00304

Single Nest CES-Feenstra

All Bilateral Comparisons vs Chicago vs National Household

Hedonic Variety Adj CES-Feenstra Variety Adj CES-Feenstra Variety Adj CES-SV
ln Pop 0.185∗∗∗ -0.0398∗∗∗ 0.133∗∗∗ -0.0379∗∗∗ 0.00848 -0.0482∗∗∗ 0.113∗∗∗

(0.0166) (0.00256) (0.0167) (0.00205) (0.0124) (0.00181) (0.00624)
N 1470 1470 1470 1470 1470 67620 67620
R2 0.159 0.149 0.0746 0.345 0.00304 0.462 0.391

Notes: All dependent variables are in logs. Population estimates are obtained from the Census Bureau. Robust
standard errors in parentheses. Robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A12: Relationship between Elasticity of Substitution and Nest-level Variety Adjustment

All Bilateral All Bilateral National Household National Household
ln Nest Variety Adj -0.155∗∗∗ -0.213∗∗∗ -0.656∗∗∗ -0.701∗∗∗

(0.0235) (0.0322) (0.0102) (0.00890)
N 8820 8820 8820 8820
R2 0.00303 0.00416 0.205 0.219
FE t it t it

Notes: Observations are at the nest-MSA-year level. Standard errors clustered at the MSA X year level.

Table A13: Equivalent Aggregate Sigmas

Sigma
Mean 6.3

p5 1.4
p10 2.6
p25 4.8
p50 6.4
p75 8.1
p90 9.8
p95 11.0
N 1176

Notes: Statistics are computed on the equivalent sigmas between the 10th and 90th percentile of the initial distribution.

86



varieties in MSA i, and since Chicago has a super-set of varieties relative to MSA i, then λit = 1.
For a single nest, the predicted population elasticity using the number of varieties is -0.054, in

contrast to the estimated -0.052 with a single nest and -0.07 with multiple nests.

J.2 Distance Analysis

Table A14: Price Indices vs Population (2005-2019)

All Bilateral Comparisons
Hedonic Variety Index CES-RW

Panel A: Within 20 miles
ln Pop 0.181∗∗∗ -0.0361∗∗∗ 0.0962∗∗∗

(0.0158) (0.00245) (0.0148)
Panel B: Within 30 miles
ln Pop 0.170∗∗∗ -0.0445∗∗∗ 0.0824∗∗∗

(0.0155) (0.00215) (0.0143)
Panel C: Within 50 miles
ln Pop 0.169∗∗∗ -0.0474∗∗∗ 0.0793∗∗∗

(0.0155) (0.00209) (0.0141)

Notes: Robust standard errors in parentheses. A single nest is used. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

J.3 Robustness Checks

Table A15: Price Indices vs Population: Alternative Nesting Structure Bedrooms

Nested CES-RW

All Bilateral Comparisons

Hedonic Variety Common CES-RW
ln Pop 0.185∗∗∗ -0.0667∗∗∗ 0.167∗∗∗ 0.0999∗∗∗

(0.0166) (0.0027) (0.0168) (0.0166)
N 1470 1470 1470 1470
R2 0.159 0.378 0.0795 0.0317

Notes: All dependent variables are in logs. Population estimates are obtained from the Census Bureau. Robust
standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Appendix K Spatial Implications

K.1 Amenity Data Sources

1. AQI is obtained at the MSA level from from the EPA (runs from 0 to 500). Higher levels
indicate worse air pollution.
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Table A16: Price Indices vs Income and Population (2005-2019)

Nested CES-RW Nested CES-RW

Hedonic Variety Common CES-RW Hedonic Variety Common CES-RW
ln MSA HH 3.223∗∗∗ -0.470∗∗∗ 3.062∗∗∗ 2.592∗∗∗ 3.061∗∗∗ -0.153∗∗∗ 3.010∗∗∗ 2.857∗∗∗

Income (0.153) (0.0308) (0.167) (0.166) (0.171) (0.0267) (0.193) (0.200)

ln Pop 0.0325 -0.0635∗∗∗ 0.0103 -0.0532∗

(0.0187) (0.00316) (0.0202) (0.0207)
N 1366 1366 1366 1366 1366 1366 1366 1366
R2 0.352 0.167 0.249 0.198 0.354 0.377 0.249 0.203

Notes: All dependent variables are in logs. Population estimates are obtained from the Census Bureau. t denotes year
fixed effects. Ln MSA HH Income is the post-tax average household income in each MSA, residualized with
household-head demographic variables. Robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Figure A10: Density of Characteristics Across Nests: Alternative Nesting Structure
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2. Average commute time is measured from IPUMS ACS.

3. Violent and Property Crime are obtained from NACJD from University of Michigan’s ICPSR
at the county-level for 2005-2014, 2016, while 2015 and 2017-2019 data are obtained from FBI
UCR MSA level reports. This allows me to define a constant geography over time.

4. “Heating degree-days are the number of degrees that the daily average temperature falls be-
low 65° F. Cooling degree-days are the number of degrees that the daily average temperature
rises above 65° F.” Precipitation is measured as days with more than 0.1 inch of precipitation.
Data obtained from the National Center for Environmental Information Global Summary of
the Year dataset.

K.2 Difference in Recovered Amenities

To rationalize the observed spatial equilibrium, urban and regional models include local amenities
that compensate for differences in market consumption.

Figure A11 compares the average implied amenities from the hedonic index and the nested
CES-RW index under three different values of ν: 4, 8, ∞. Since the 45-degree line is close to the
linear fit, amenities implied by the hedonic index are not systematically underestimated or over-
estimated.

However, there is significant dispersion around the line of best fit. Consider the absolute
difference between the amenities implied by the hedonic index and the nested CES-RW index.
I find that the mean difference for the Rosen-Roback calibration is 0.14 log points, with a standard
deviation of 0.10 log points. The 75% percentile is 0.2 log points, so that that 25% of MSAs have
amenities that change by at least 22% after using the CES-RW index.82

K.3 Household Heterogeneity

82These estimates are obtained by normalizing average amenities to zero under both calibrations.
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Figure A11: Amenity Comparison Implied by Hedonic versus Nested CES-RW
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(c) Rosen-Roback: ν = ∞
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Table A17: Price Indices vs Population (2005-2019)

Chicago Comparison All Bilateral Comparisons

Hedonic Variety Index CES-RW Variety Index CES-RW
Quartile 1
ln Pop 0.156∗∗∗ -0.033∗∗∗ 0.115∗∗∗ -0.047∗∗∗ 0.061∗∗∗

(0.016) (0.008) (0.022) (0.003) (0.009)
Quartile 2
ln Pop 0.165∗∗∗ -0.065∗∗∗ 0.091∗∗∗ -0.065∗∗∗ 0.059∗∗∗

(0.016) (0.008) (0.018) (0.002) (0.008)
Quartile 3
ln Pop 0.160∗∗∗ -0.072∗∗∗ 0.063∗∗∗ -0.075∗∗∗ 0.051∗∗∗

(0.015) (0.007) (0.016) (0.002) (0.008)
Quartile 4
ln Pop 0.164∗∗∗ -0.058∗∗∗ 0.103∗∗∗ -0.075∗∗∗ 0.096∗∗∗

(0.015) (0.005) (0.016) (0.006) (0.017)

Notes: All dependent variables are in logs. Population estimates are obtained from the Census Bureau. t denotes year
fixed effects. Robust standard errors in parentheses for the Chicago Comparison and clustered standard errors at the
comparison MSA level for All Bilateral Comparisons. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure A12: Heterogeneity in Expenditure Shares
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K.4 Skill Heterogeneity in Real Income

In this section, I measure how market consumption differs among three skill groups. Compared
to Diamond and Moretti (2021), I find that standard approaches substantially underestimate real
income in larger cities for all three skill types. Following Diamond and Moretti, I define the low
skill group is where the household head has less than a high school degree, the middle skill group
is where the household head has completed high school degree or partial college, and the high
skill group is where the household head has a college degree or higher.

To flexibly account for differing expenditure shares, I compute average housing expenditure
shares by MSA and income quartile, µiq, where i indexes MSAs and q indexes the income quartile.
Figure A12 shows that expenditure shares on housing is more than twice as high in the lowest
income quartile compared to the highest income quartile.

Using the estimated expenditure shares, I then construct relative local prices by using a Törnqvist
upper-level price index (which uses the bilateral average expenditure share on housing).83 I also
compute the average household post-tax income for each skill group in each MSA, wic, where c
indexes skill group.84

To map skill groups to income quartile, I measure the share of skill group that belongs to each
quartile q. The local price index for skill group s is defined as

µci ln PH
ci = ∑

q
sH

cqiµqi ln PH
qi

where sH
cqit is the share of skill group c that belongs to income quartile q in MSA i

Figure A13 presents the estimated population elasticities of nominal wages, real income im-

83Specifically, the relative local price index for locations i and n for income quartile q is given by
µiq+µnq

2

(
ln Piq − ln Pnq

)
.

84Post-tax household income are residualized using the same set of variables in the main analysis by skill group.
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Figure A13: Real Income: Skill Heterogeneity
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(c) High Skill
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plied by hedonic price index, and real income implied by the CES price index for three skill groups.
The substantially higher wage profile for the high-skill group relative to the low-skill group re-
flects the well-documented urban skill premium.

I first focus on the change in nominal income to real income implied by a hedonic price index.
The decrease in the population elasticity when going from nominal to real income is highest for
low-skill households. This is due to the fact that low-skill households have the highest expendi-
ture shares on housing. As a result, real income is substantially declining in MSA population for
low-skill households (population elasticity of -0.05), compared to high-skill households that see
an increasing real income in MSA population (population elasticity of 0.02).

Next, what happens to real income after accounting for housing variety? I find that the lower
housing cost for high-income households in larger MSAs is offset by lower expenditure shares. As
a result, the increase in the elasticity of real income for all three skill groups is similar (elasticity of
real income increases by 0.03). As a result, high-skill households have even higher real incomes
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than previously measured in larger MSAs. At the same time, low-skill households face a smaller
decline in real income when moving from a smaller to larger MSA than previously measured.
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